The spectral Dirichlet-Neumann map for Laplaces equation in a convex polygon


Abstract in English

We provide a new approach to studying the Dirichlet-Neumann map for Laplaces equation on a convex polygon using Fokas unified method for boundary value problems. By exploiting the complex analytic structure inherent in the unified method, we provide new proofs of classical results using mainly complex analytic techniques. The analysis takes place in a Banach space of complex valued, analytic functions and the methodology is based on classical results from complex analysis. Our approach gives way to new numerical treatments of the underlying boundary value problem and the associated Dirichlet-Neumann map. Using these new results we provide a family of well-posed weak problems associated with the Dirichlet-Neumann map, and prove relevant coercivity estimates so that standard techniques can be applied.

Download