Revealing the state space of turbulent pipe flow by symmetry reduction


Abstract in English

Symmetry reduction by the method of slices is applied to pipe flow in order to quotient the stream-wise translation and azimuthal rotation symmetries of turbulent flow states. Within the symmetry-reduced state space, all travelling wave solutions reduce to equilibria, and all relative periodic orbits reduce to periodic orbits. Projections of these solutions and their unstable manifolds from their $infty$-dimensional symmetry-reduced state space onto suitably chosen 2- or 3-dimensional subspaces reveal their interrelations and the role they play in organising turbulence in wall-bounded shear flows. Visualisations of the flow within the slice and its linearisation at equilibria enable us to trace out the unstable manifolds, determine close recurrences, identify connections between different travelling wave solutions, and find, for the first time for pipe flows, relative periodic orbits that are embedded within the chaotic attractor, which capture turbulent dynamics at transitional Reynolds numbers.

Download