Towards density and phase space compression of molecular gases in magneto-electrostatic traps


Abstract in English

We introduce, analyze, and compare two novel methods of Single Photon Cooling that generically cool and compress molecular gases. The first method compresses the molecular gas density by three orders of magnitude and increases collision frequency in trapped samples. The second method compresses the phase space density of the gas by at least two orders of magnitude. Designed with combinations of electric and magnetic fields these methods cool the molecules from ~100mK to 1mK using a single irreversible state change. They can be regarded as generic cooling schemes applicable to any molecule with a magnetic and electric dipole moment. The high efficiency calculated, compared to schemes involving cycling, is a result of cooling the molecules with a single step.

Download