Do you want to publish a course? Click here

On the error of estimating the sparsest solution of underdetermined linear systems

104   0   0.0 ( 0 )
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

Let A be an n by m matrix with m>n, and suppose that the underdetermined linear system As=x admits a sparse solution s0 for which ||s0||_0 < 1/2 spark(A). Such a sparse solution is unique due to a well-known uniqueness theorem. Suppose now that we have somehow a solution s_hat as an estimation of s0, and suppose that s_hat is only `approximately sparse, that is, many of its components are very small and nearly zero, but not mathematically equal to zero. Is such a solution necessarily close to the true sparsest solution? More generally, is it possible to construct an upper bound on the estimation error ||s_hat-s0||_2 without knowing s0? The answer is positive, and in this paper we construct such a bound based on minimal singular values of submatrices of A. We will also state a tight bound, which is more complicated, but besides being tight, enables us to study the case of random dictionaries and obtain probabilistic upper bounds. We will also study the noisy case, that is, where x=As+n. Moreover, we will see that where ||s0||_0 grows, to obtain a predetermined guaranty on the maximum of ||s_hat-s0||_2, s_hat is needed to be sparse with a better approximation. This can be seen as an explanation to the fact that the estimation quality of sparse recovery algorithms degrades where ||s0||_0 grows.



rate research

Read More

Let x be a signal to be sparsely decomposed over a redundant dictionary A, i.e., a sparse coefficient vector s has to be found such that x=As. It is known that this problem is inherently unstable against noise, and to overcome this instability, the authors of [Stable Recovery; Donoho et.al., 2006] have proposed to use an approximate decomposition, that is, a decomposition satisfying ||x - A s|| < delta, rather than satisfying the exact equality x = As. Then, they have shown that if there is a decomposition with ||s||_0 < (1+M^{-1})/2, where M denotes the coherence of the dictionary, this decomposition would be stable against noise. On the other hand, it is known that a sparse decomposition with ||s||_0 < spark(A)/2 is unique. In other words, although a decomposition with ||s||_0 < spark(A)/2 is unique, its stability against noise has been proved only for highly more restrictive decompositions satisfying ||s||_0 < (1+M^{-1})/2, because usually (1+M^{-1})/2 << spark(A)/2. This limitation maybe had not been very important before, because ||s||_0 < (1+M^{-1})/2 is also the bound which guaranties that the sparse decomposition can be found via minimizing the L1 norm, a classic approach for sparse decomposition. However, with the availability of new algorithms for sparse decomposition, namely SL0 and Robust-SL0, it would be important to know whether or not unique sparse decompositions with (1+M^{-1})/2 < ||s||_0 < spark(A)/2 are stable. In this paper, we show that such decompositions are indeed stable. In other words, we extend the stability bound from ||s||_0 < (1+M^{-1})/2 to the whole uniqueness range ||s||_0 < spark(A)/2. In summary, we show that all unique sparse decompositions are stably recoverable. Moreover, we see that sparser decompositions are more stable.
A lower bound on the maximum likelihood (ML) decoding error exponent of linear block code ensembles, on the erasure channel, is developed. The lower bound turns to be positive, over an ensemble specific interval of erasure probabilities, when the ensemble weight spectral shape function tends to a negative value as the fractional codeword weight tends to zero. For these ensembles we can therefore lower bound the block-wise ML decoding threshold. Two examples are presented, namely, linear random parity-check codes and fixed-rate Raptor codes with linear random precoders. While for the former a full analytical solution is possible, for the latter we can lower bound the ML decoding threshold on the erasure channel by simply solving a 2 x 2 system of nonlinear equations.
128 - Minghui Yang , Jiejing Wen 2019
We study the $k$-error linear complexity of subsequences of the $d$-ary Sidelnikov sequences over the prime field $mathbb{F}_{d}$. A general lower bound for the $k$-error linear complexity is given. For several special periods, we show that these sequences have large $k$-error linear complexity.
For a stationary stochastic process ${X_n}$ with values in some set $A$, a finite word $w in A^K$ is called a memory word if the conditional probability of $X_0$ given the past is constant on the cylinder set defined by $X_{-K}^{-1}=w$. It is a called a minimal memory word if no proper suffix of $w$ is also a memory word. For example in a $K$-step Markov processes all words of length $K$ are memory words but not necessarily minimal. We consider the problem of determining the lengths of the longest minimal memory words and the shortest memory words of an unknown process ${X_n}$ based on sequentially observing the outputs of a single sample ${xi_1,xi_2,...xi_n}$. We will give a universal estimator which converges almost surely to the length of the longest minimal memory word and show that no such universal estimator exists for the length of the shortest memory word. The alphabet $A$ may be finite or countable.
We consider linear network error correction (LNEC) coding when errors may occur on edges of a communication network of which the topology is known. In this paper, we first revisit and explore the framework of LNEC coding, and then unify two well-known LNEC coding approaches. Furthermore, by developing a graph-theoretic approach to the framework of LNEC coding, we obtain a significantly enhanced characterization of the error correction capability of LNEC codes in terms of the minimum distances at the sink nodes. In LNEC coding, the minimum required field size for the existence of LNEC codes, in particular LNEC maximum distance separable (MDS) codes which are a type of most important optimal codes, is an open problem not only of theoretical interest but also of practical importance, because it is closely related to the implementation of the coding scheme in terms of computational complexity and storage requirement. By applying the graph-theoretic approach, we obtain an improved upper bound on the minimum required field size. The improvement over the existing results is in general significant. The improved upper bound, which is graph-theoretic, depends only on the network topology and requirement of the error correction capability but not on a specific code construction. However, this bound is not given in an explicit form. We thus develop an efficient algorithm that can compute the bound in linear time. In developing the upper bound and the efficient algorithm for computing this bound, various graph-theoretic concepts are introduced. These concepts appear to be of fundamental interest in graph theory and they may have further applications in graph theory and beyond.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا