Do you want to publish a course? Click here

Quantum origin of pre-big bang collapse from Induced Matter theory of gravity

98   0   0.0 ( 0 )
 Added by Mauricio Bellini
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit a collapsing pre-big-bang model of the universe to study with detail the non-perturbative quantum dynamics of the dispersal scalar field whose dynamics becomes from the dynamical foliation of test massless scalar field $phi$ on a 5D Riemann-flat metric, such that the extra space-like coordinate is noncompact. The important result here obtained is that the evolution of the system, which is described thorough the equation of state has the unique origin in the quantum contributions of the effective 4D scalar field.



rate research

Read More

We discuss the possibility of producing a significant fraction of dark matter in the form of primordial black holes in the context of the pre-big bang inflationary scenario. We take into account, to this purpose, the enhancement of curvature perturbations possibly induced by a variation of the sound-speed parameter $c_s$ during the string phase of high-curvature inflation. After imposing all relevant observational constraints, we find that the considered class of models is compatible with the production of a large amount of primordial black holes in the mass range relevant to dark matter, provided the sound-speed parameter is confined in a rather narrow range of values, $0.003 < c_s < 0.01$.
86 - M. Gasperini 2016
In the light of the recent results concerning CMB observations and GW detection we address the question of whether it is possible, in a self-consistent inflationary framework, to simultaneously generate a spectrum of scalar metric perturbations in agreement with Planck data and a stochastic background of primordial gravitational radiation compatible with the design sensitivity of aLIGO/Virgo and/or eLISA. We suggest that this is possible in a string cosmology context, for a wide region of the parameter space of the so-called pre-big bang models. We also discuss the associated values of the tensor-to-scalar ratio relevant to the CMB polarization experiments. We conclude that future, cross-correlated results from CMB observations and GW detectors will be able to confirm or disprove pre-big bang models and -- in any case -- will impose new significant constraints on the basic string theory/cosmology parameters.
The sensitivity achievable by a pair of VIRGO detectors to stochastic and isotropic gravitational wave backgrounds produced in pre-big-bang models is discussed in view of the development of a second VIRGO interferometer. We describe a semi-analytical technique allowing to compute the signal-to-noise ratio for (monotonic or non-monotonic) logarithmic energy spectra of relic gravitons of arbitrary slope. We apply our results to the case of two correlated and coaligned VIRGO detectors and we compute their achievable sensitivities. We perform our calculations both for the usual case of minimal string cosmological scenario and in the case of a non-minimal scenario where a long dilaton dominated phase is present prior to the onset of the ordinary radiation dominated phase. In this framework, we investigate possible improvements of the achievable sensitivities by selective reduction of the thermal contributions (pendulum and pendulums internal modes) to the noise power spectra of the detectors. Since a reduction of the shot noise does not increase significantly the expected sensitivity of a VIRGO pair (in spite of the relative spatial location of the two detectors) our findings support the experimental efforts directed towards a substantial reduction of thermal noise.
57 - M. Gasperini 2017
We study the amplification of the electromagnetic fluctuations, and the production of seeds for the cosmic magnetic fields, in a class of string cosmology models whose scalar and tensor perturbations reproduce current observations and satisfy known phenomenological constraints. We find that the condition of efficient seeds production can be satisfied and compatible with all constraints only in a restricted region of parameter space, but we show that such a region has significant intersections with the portions of parameter space where the produced background of relic gravitational waves is strong enough to be detectable by aLIGO/Virgo and/or by eLISA.
We use Big Bang Nucleosynthesis (BBN) data in order to impose constraints on the exponent of Barrow entropy. The latter is an extended entropy relation arising from the incorporation of quantum-gravitational effects on the black-hole structure, parameterized effectively by the new parameter $Delta$. When considered in a cosmological framework and under the light of the gravity-thermodynamics conjecture, Barrow entropy leads to modified cosmological scenarios whose Friedmann equations contain extra terms. We perform a detailed analysis of the BBN era and we calculate the deviation of the freeze-out temperature comparing to the result of standard cosmology. We use the observationally determined bound on $ |frac{delta {T}_f}{{T}_f}|$ in order to extract the upper bound on $Delta$. As we find, the Barrow exponent should be inside the bound $Deltalesssim 1.4times 10^{-4}$ in order not to spoil the BBN epoch, which shows that the deformation from standard Bekenstein-Hawking expression should be small as expected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا