The nature and interplay of intrinsic point and extended defects in n-type Si-doped InN epilayers with free carrier concentrations up to 6.6x10E20cm-3 are studied using positron annihilation spectroscopy and transmission electron microscopy and compared to results from undoped irradiated films. In as-grown Si-doped samples, V_In-V_N complexes are the dominant III-sublattice related vacancy defects. Enhanced formation of larger V_In-mV_N clusters is observed at the interface, which speaks for high concentrations of additional V_N in the near-interface region and coincides with an increase in the density of screw and edge type dislocations in that area.