Do you want to publish a course? Click here

Discovering Emerging Topics in Social Streams via Link Anomaly Detection

95   0   0.0 ( 0 )
 Added by Ryota Tomioka
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

Detection of emerging topics are now receiving renewed interest motivated by the rapid growth of social networks. Conventional term-frequency-based approaches may not be appropriate in this context, because the information exchanged are not only texts but also images, URLs, and videos. We focus on the social aspects of theses networks. That is, the links between users that are generated dynamically intentionally or unintentionally through replies, mentions, and retweets. We propose a probability model of the mentioning behaviour of a social network user, and propose to detect the emergence of a new topic from the anomaly measured through the model. We combine the proposed mention anomaly score with a recently proposed change-point detection technique based on the Sequentially Discounting Normalized Maximum Likelihood (SDNML), or with Kleinbergs burst model. Aggregating anomaly scores from hundreds of users, we show that we can detect emerging topics only based on the reply/mention relationships in social network posts. We demonstrate our technique in a number of real data sets we gathered from Twitter. The experiments show that the proposed mention-anomaly-based approaches can detect new topics at least as early as the conventional term-frequency-based approach, and sometimes much earlier when the keyword is ill-defined.

rate research

Read More

In the presence of heterogeneous data, where randomly rotated objects fall into multiple underlying categories, it is challenging to simultaneously classify them into clusters and synchronize them based on pairwise relations. This gives rise to the joint problem of community detection and synchronization. We propose a series of semidefinite relaxations, and prove their exact recovery when extending the celebrated stochastic block model to this new setting where both rotations and cluster identities are to be determined. Numerical experiments demonstrate the efficacy of our proposed algorithms and confirm our theoretical result which indicates a sharp phase transition for exact recovery.
Most real-world networks are incompletely observed. Algorithms that can accurately predict which links are missing can dramatically speedup the collection of network data and improve the validity of network models. Many algorithms now exist for predicting missing links, given a partially observed network, but it has remained unknown whether a single best predictor exists, how link predictability varies across methods and networks from different domains, and how close to optimality current methods are. We answer these questions by systematically evaluating 203 individual link predictor algorithms, representing three popular families of methods, applied to a large corpus of 548 structurally diverse networks from six scientific domains. We first show that individual algorithms exhibit a broad diversity of prediction errors, such that no one predictor or family is best, or worst, across all realistic inputs. We then exploit this diversity via meta-learning to construct a series of stacked models that combine predictors into a single algorithm. Applied to a broad range of synthetic networks, for which we may analytically calculate optimal performance, these stacked models achieve optimal or nearly optimal levels of accuracy. Applied to real-world networks, stacked models are also superior, but their accuracy varies strongly by domain, suggesting that link prediction may be fundamentally easier in social networks than in biological or technological networks. These results indicate that the state-of-the-art for link prediction comes from combining individual algorithms, which achieves nearly optimal predictions. We close with a brief discussion of limitations and opportunities for further improvement of these results.
We present new methods for batch anomaly detection in multivariate time series. Our methods are based on maximizing the Kullback-Leibler divergence between the data distribution within and outside an interval of the time series. An empirical analysis shows the benefits of our algorithms compared to methods that treat each time step independently from each other without optimizing with respect to all possible intervals.
Given a stream of graph edges from a dynamic graph, how can we assign anomaly scores to edges in an online manner, for the purpose of detecting unusual behavior, using constant time and memory? Existing approaches aim to detect individually surprising edges. In this work, we propose MIDAS, which focuses on detecting microcluster anomalies, or suddenly arriving groups of suspiciously similar edges, such as lockstep behavior, including denial of service attacks in network traffic data. We further propose MIDAS-F, to solve the problem by which anomalies are incorporated into the algorithms internal states, creating a `poisoning effect that can allow future anomalies to slip through undetected. MIDAS-F introduces two modifications: 1) We modify the anomaly scoring function, aiming to reduce the `poisoning effect of newly arriving edges; 2) We introduce a conditional merge step, which updates the algorithms data structures after each time tick, but only if the anomaly score is below a threshold value, also to reduce the `poisoning effect. Experiments show that MIDAS-F has significantly higher accuracy than MIDAS. MIDAS has the following properties: (a) it detects microcluster anomalies while providing theoretical guarantees about its false positive probability; (b) it is online, thus processing each edge in constant time and constant memory, and also processes the data orders-of-magnitude faster than state-of-the-art approaches; (c) it provides up to 62% higher ROC-AUC than state-of-the-art approaches.
The increasing connectivity of data and cyber-physical systems has resulted in a growing number of cyber-attacks. Real-time detection of such attacks, through the identification of anomalous activity, is required so that mitigation and contingent actions can be effectively and rapidly deployed. We propose a new approach for aggregating unsupervised anomaly detection algorithms and incorporating feedback when it becomes available. We apply this approach to open-source real datasets and show that both aggregating models, which we call experts, and incorporating feedback significantly improve the performance. An important property of the proposed approaches is their theoretical guarantees that they perform close to the best superexpert, which can switch between the best performing experts, in terms of the cumulative average losses.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا