A phenomenological theory of spin-lattice relaxation of multiple-quantum coherences in systems of two dipolar coupled spins at low temperatures is developed. Intensities of multiple-quantum NMR coherences depending on the spin-lattice relaxation time are obtained. It is shown that the theory is also applicable to finite spin chains when the approximation of nearest neighbour interaction is used. An application of this theory to an estimation of the influence of decoherence processes on quantum entanglement and its fluctuations is briefly discussed.