Do you want to publish a course? Click here

Configuration space integrals and the cohomology of the space of homotopy string links

226   0   0.0 ( 0 )
 Added by Ismar Volic
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

Configuration space integrals have in recent years been used for studying the cohomology of spaces of (string) knots and links in $mathbb{R}^n$ for $n>3$ since they provide a map from a certain differential algebra of diagrams to the deRham complex of differential forms on the spaces of knots and links. We refine this construction so that it now applies to the space of homotopy string links -- the space of smooth maps of some number of copies of $mathbb{R}$ in $mathbb{R}^n$ with fixed behavior outside a compact set and such that the images of the copies of $R$ are disjoint -- even for $n=3$. We further study the case $n=3$ in degree zero and show that our integrals represent a universal finite type invariant of the space of classical homotopy string links. As a consequence, we obtain configuration space integral expressions for Milnor invariants of string links.



rate research

Read More

We study configuration space integral formulas for Milnors homotopy link invariants, showing that they are in correspondence with certain linear combinations of trivalent trees. Our proof is essentially a combinatorial analysis of a certain space of trivalent homotopy link diagrams which corresponds to all finite type homotopy link invariants via configuration space integrals. An important ingredient is the fact that configuration space integrals take the shuffle product of diagrams to the product of invariants. We ultimately deduce a partial recipe for writing explicit integral formulas for products of Milnor invariants from trivalent forests. We also obtain cohomology classes in spaces of link maps from the same data.
We use rational formality of configuration spaces and the bar construction to study the cohomology of the space of braids in dimension four or greater. We provide a diagram complex for braids and a quasi-isomorphism to the de Rham cochains on the space of braids. The quasi-isomorphism is given by a configuration space integral followed by Chens iterated integrals. This extends results of Kohno and of Cohen and Gitler on the cohomology of the space of braids to a CDGA suitable for integration. We show that this integration is compatible with Bott-Taubes configuration space integrals for long links via a map between two diagram complexes. As a corollary, we get a surjection in cohomology from the space of long links to the space of braids. We also discuss to what extent our results apply to the case of classical braids.
341 - George Raptis 2021
We discuss an approach to the emph{covering} and emph{vanishing} theorems for the comparison map from bounded cohomology to singular cohomology, based on the observation that the comparison map is the coassembly map for bounded cohomology.
We explain how higher homotopy operations, defined topologically, may be identified under mild assumptions with (the last of) the Dwyer-Kan-Smith cohomological obstructions to rectifying homotopy-commutative diagrams.
The index theory for the space of finite propagation unitary operators was developed by Gross, Nesme, Vogts and Werner from the viewpoint of quantum walks in mathematical physics. In particular, they proved that $pi_0$ of the space is determined by the index. However, nothing is known about the higher homotopy groups. In this article, we describe the homotopy type of the space of finite propagation unitary operators on the Hilbert space of square summable $mathbb{C}$-valued $mathbb{Z}$-sequences, so we can determine its homotopy groups. We also study the space of (end-)periodic finite propagation unitary operators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا