Reexamination of the optimal Bayes cost in the binary decision problem


Abstract in English

The problem of quantum state discrimination between two wave functions of a particle in a square well potential is considered. The optimal minimum-error probability is known to be given by the Helstrom bound. A new strategy is introduced by inserting an impenetrable barrier in the middle of the square well, which is either a nodal or non-nodal point of the wave function. The energy required to insert the barrier is dependent on the initial state. This enables the experimenter to gain additional information beyond the standard probing of the state envisaged by Helstrom and to improve the distinguishability of the states. It is shown that under some conditions the Helstrom bound can be violated, i.e. the state discrimination can be realized with a smaller error probability.

Download