Do you want to publish a course? Click here

VLT Optical BVR observations of two bright Supernova Ia hosts in the Virgo cluster

83   0   0.0 ( 0 )
 Added by Michele Cantiello
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the two galaxies NGC4621 and NGC4374 in the Virgo cluster to derive their distances and stellar population properties. The targets have hosted three type Ia Supernova events allowing to investigate the correlations between the SNeIa and their host stellar systems. Using deep BVR data, obtained with FORS2 at the VLT, we analyse the Surface Brightness Fluctuations (SBF) properties of the targets. We adopt our measurements and existing calibrations to estimate the distance of NGC4621 and NGC4374. For stellar population analysis, we measured SBF amplitudes in different galaxy regions. We present a detailed comparison between data and models to constrain the characteristics of the dominant stellar components at i) various galactic radii, and ii) in the regions where SNeIa were recorded. Our V and R SBF measures provide distances in agreement with literature estimates. The median of our and literature SBF-based distances agrees with the one from non-SBF methods. Comparing data with models we find that stellar populations properties do not change significantly along galactic radius, with a dominant population having old age and solar chemical composition. The galaxies appear similar in all properties analysed, except for B-band SBF. Since the SBF magnitudes in this band are sensitive to the properties of a hot stellar component, we speculate that such behaviour is a consequence of different diffuse hot components in the galaxies. We find that the presence of a percentage of hot-HB stars in old and metal rich stellar populations could be at the origin of the observed differences. We find a good uniformity in the V and R SBF and integrated colours in the regions where the three SNeIa exploded. On the other hand, the B-band SBF signal shows intriguing differences.



rate research

Read More

We main goal of this paper is to test whether the NIR peak magnitudes of SNe Ia could be accurately estimated with only a single observation obtained close to maximum light, provided the time of B band maximum and the optical stretch parameter are known. We obtained multi-epoch UBVRI and single-epoch J and H photometric observations of 16 SNe Ia in the redshift range z=0.037-0.183, doubling the leverage of the current SN Ia NIR Hubble diagram and the number of SNe beyond redshift 0.04. This sample was analyzed together with 102 NIR and 458 optical light curves (LCs) of normal SNe Ia from the literature. The analysis of 45 well-sampled NIR LCs shows that a single template accurately describes them if its time axis is stretched with the optical stretch parameter. This allows us to estimate the NIR peak magnitudes even with one observation obtained within 10 days from B-band maximum. We find that the NIR Hubble residuals show weak correlation with DM_15 and E(B-V), and for the first time we report a possible dependence on the J_max-H_max color. The intrinsic NIR luminosity scatter of SNe Ia is estimated to be around 0.10 mag, which is smaller than what can be derived for a similarly heterogeneous sample at optical wavelengths. In conclusion, we find that SNe Ia are at least as good standard candles in the NIR as in the optical. We showed that it is feasible to extended the NIR SN Ia Hubble diagram to z=0.2 with very modest sampling of the NIR LCs, if complemented by well-sampled optical LCs. Our results suggest that the most efficient way to extend the NIR Hubble diagram to high redshift would be to obtain a single observation close to the NIR maximum. (abridged)
236 - T. Zhang , X. Wang , W. Li 2009
We present optical photometry and spectra for the Type Ia supernova (SN Ia) 2007gi in the nearby galaxy NGC 4036. SN 2007gi is characterized by extremely high-velocity (HV) features of the intermediate-mass elements (Si, Ca, and S), with expansion velocities ($v_{rm exp}$) approaching $sim$15,500 km s$^{-1}$ near maximum brightness (compared to $sim$10,600 km s$^{-1}$ for SNe Ia with normal $v_{rm exp}$). SN 2007gi reached a $B$-band peak magnitude of 13.25$pm$0.04 mag with a decline rate of $Delta m_{15}(B)$(true) = 1.33$pm$0.09 mag. The $B$-band light curve of SN 2007gi demonstrated an interesting two-stage evolution during the nebular phase, with a decay rate of 1.16$pm$0.05 mag (100 days)$^{-1}$ during $t = 60$--90 days and 1.61$pm0.04$ mag (100 days)$^{-1}$ thereafter. Such a behavior was also observed in the HV SN Ia 2006X, and might be caused by the interaction between supernova ejecta and circumstellar material (CSM) around HV SNe Ia. Based on a sample of a dozen well-observed $R$-band (or unfiltered) light curves of SNe Ia, we confirm that the HV events may have a faster rise time to maximum than the ones with normal $v_{rm exp}$.
We use multi-wavelength, matched aperture, integrated photometry from GALEX, SDSS and the RC3 to estimate the physical properties of 166 nearby galaxies hosting 168 well-observed Type Ia supernovae (SNe Ia). Our data corroborate well-known features that have been seen in other SN Ia samples. Specifically, hosts with active star formation produce brighter and slower SNe Ia on average, and hosts with luminosity-weighted ages older than 1 Gyr produce on average more faint, fast and fewer bright, slow SNe Ia than younger hosts. New results include that in our sample, the faintest and fastest SNe Ia occur only in galaxies exceeding a stellar mass threshhold of ~10^10 M_sun, indicating that their progenitors must arise in populations that are older and/or more metal rich than the general SN Ia population. A low host extinction sub-sample hints at a residual trend in peak luminosity with host age, after correcting for light-curve shape, giving the appearance that older hosts produce less-extincted SNe Ia on average. This has implications for cosmological fitting of SNe Ia and suggests that host age could be useful as a parameter in the fitting. Converting host mass to metallicity and computing 56Ni mass from the supernova light curves, we find that our local sample is consistent with a model that predicts a shallow trend between stellar metallicity and the 56Ni mass that powers the explosion, but we cannot rule out the absence of a trend. We measure a correlation between 56Ni mass and host age in the local universe that is shallower and not as significant as that seen at higher redshifts. The details of the age -- 56Ni mass correlations at low and higher redshift imply a luminosity-weighted age threshhold of ~3 Gyr for SN Ia hosts, above which they are less likely to produce SNe Ia with 56Ni masses above ~0.5 M_sun. (Abridged)
Using the sample of Type Ia supernovae (SNe Ia) discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey and augmented with HST-observed SNe Ia in the GOODS fields, we search for correlations between the properties of SNe and their host galaxies at high redshift. We use galaxy color and quantitative morphology to determine the red sequence in 25 clusters and develop a model to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, we identify six SN Ia hosts that are early-type cluster members and eleven SN Ia hosts that are early-type field galaxies. We confirm for the first time at z>0.9 that SNe Ia hosted by early-type galaxies brighten and fade more quickly than SNe Ia hosted by late-type galaxies. We also show that the two samples of hosts produce SNe Ia with similar color distributions. The relatively simple spectral energy distributions (SEDs) expected for passive galaxies enable us to measure stellar masses of early-type SN hosts. In combination with stellar mass estimates of late-type GOODS SN hosts from Thomson & Chary (2011), we investigate the correlation of host mass with Hubble residual observed at lower redshifts. Although the sample is small and the uncertainties are large, a hint of this relation is found at z>0.9. By simultaneously fitting the average cluster galaxy formation history and dust content to the red-sequence scatters, we show that the reddening of early-type cluster SN hosts is likely E(B-V) <~ 0.06. The similarity of the field and cluster early-type host samples suggests that field early-type galaxies that lie on the red sequence may also be minimally affected by dust. Hence, the early-type hosted SNe Ia studied here occupy a more favorable environment to use as well-characterized high-redshift standard candles than other SNe Ia.
We aim to present 70 spectra of 68 new high-redshift type Ia supernovae (SNeIa) measured at ESOs VLT during the final two years of operation (2006-2008) of the Supernova Legacy Survey (SNLS). We use the full five year SNLS VLT spectral set to investigate a possible spectral evolution of SNeIa populations with redshift and study spectral properties as a function of lightcurve fit parameters and the mass of the host-galaxy. Reduction and extraction are based on both IRAF standard tasks and our own reduction pipeline. Redshifts are estimated from host-galaxy lines whenever possible or alternatively from supernova features. We used the spectrophotometric SNIa model SALT2 combined with a set of galaxy templates that model the host-galaxy contamination to assess the type Ia nature of the candidates. We identify 68 new SNeIa with redshift ranging from z=0.207 to z=0.98 (<z>=0.62). Each spectrum is presented individually along with its best-fit SALT2 model. The five year dataset contains 209 spectra corresponding to 192 SNeIa identified at the VLT. We also publish the redshifts of other candidates (host galaxies or other transients) whose spectra were obtained at the same time as the spectra of live SNe Ia. Using the full VLT SNeIa sample, we build composite spectra around maximum light with cuts in color, lightcurve shape parameter (stretch), host-galaxy mass and redshift. We find that high-z SNeIa are bluer, brighter and have weaker intermediate mass element absorption lines than their low-z counterparts at a level consistent with what is expected from selection effects. We also find a flux excess in the range [3000-3400] A for SNeIa in low mass host-galaxies or with locally blue U-V colors, and suggest that the UV flux (or local color) may be used in future cosmological studies as a third standardization parameter in addition to stretch and color.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا