It is well-known that helical surface states of a three-dimensional topological insulator (TI) do not respond to a static in-plane magnetic field. Formally this occurs because the in-plane magnetic field appears as a vector potential in the Dirac Hamiltonian of the surface states and can thus be removed by a gauge transformation of the surface electron wavefunctions. Here we show that when the top and bottom surfaces of a thin film of TI are hybridized and the Fermi level is in the hybridization gap, a nonzero diamagnetic response appears. Moreover, a quantum phase transition occurs at a finite critical value of the parallel field from an insulator with a diamagnetic response to a semimetal with a vanishing response to the parallel field.
We report on a study of an ultrathin topological insulator film with hybridization between the top and bottom surfaces, placed in a quantizing perpendicular magnetic field. We calculate the full Landau level spectrum of the film as a function of the applied magnetic field and the magnitude of the hybridization matrix element, taking into account both the orbital and the Zeeman spin splitting effects of the field. For an undoped film, we find a quantum phase transition between a state with a zero Hall conductivity and a state with a quantized Hall conductivity equal to $e^2/h$, as a function of the magnitude of the applied field. The transition is driven by the competition between the Zeeman and the hybridization energies.
The quantized version of anomalous Hall effect realized in magnetic topological insulators (MTIs) has great potential for the development of topological quantum physics and low-power electronic/spintronic applications. To enable dissipationless chiral edge conduction at zero magnetic field, effective exchange field arisen from the aligned magnetic dopants needs to be large enough to yield specific spin sub-band configurations. Here we report the thickness-tailored quantum anomalous Hall (QAH) effect in Cr-doped (Bi,Sb)2Te3 thin films by tuning the system across the two-dimensional (2D) limit. In addition to the Chern number-related metal-to-insulator QAH phase transition, we also demonstrate that the induced hybridization gap plays an indispensable role in determining the ground magnetic state of the MTIs, namely the spontaneous magnetization owning to considerable Van Vleck spin susceptibility guarantees the zero-field QAH state with unitary scaling law in thick samples, while the quantization of the Hall conductance can only be achieved with the assistance of external magnetic fields in ultra-thin films. The modulation of topology and magnetism through structural engineering may provide a useful guidance for the pursuit of QAH-based new phase diagrams and functionalities.
We report that the finite thickness of three-dimensional topological insulator (TI) thin films produces an observable magnetoresistance (MR) in phase coherent transport in parallel magnetic fields. The MR data of Bi2Se3 and (Bi,Sb)2Te3 thin films are compared with existing theoretical models of parallel field magnetotransport. We conclude that the TI thin films bring parallel field transport into a unique regime in which the coupling of surface states to bulk and to opposite surfaces is indispensable for understanding the observed MR. The {beta} parameter extracted from parallel field MR can in principle provide a figure of merit for searching TI compounds with more insulating bulk than existing materials.
We report a continuous phase transition between quantum-anomalous-Hall and trivial-insulator phases in a magnetic topological insulator upon magnetization rotation. The Hall conductivity transits from one plateau of quantized Hall conductivity $e^2/h$ to the other plateau of zero Hall conductivity. The transition curves taken at various temperatures cross almost at a single point, exemplifying the critical behavior of the transition. The slope of the transition curves follows a power-law temperature dependence with a critical exponent of $-0.61$. This suggests a common underlying origin in the plateau transitions between the QAH and quantum Hall systems, which is a percolation of one-dimensional chiral edge channels.
Ferromagnetism in topological insulators (TIs) opens a topologically non-trivial exchange band gap, providing an exciting platform to manipulate the topological order through an external magnetic field. Here, we experimentally show that the surface of an antiferromagnetic thin film can independently control the topological order of the top and the bottom surface states of a TI thin film through proximity couplings. During the magnetization reversal in a field scan, two intermediate spin configurations stem from unsynchronized magnetic switchings of the top and the bottom AFM/TI interfaces. These magnetic configurations are shown to result in new topological phases with non-zero Chern numbers for each surface, introducing two counter-propagating chiral edge modes inside the exchange gap. This change in the number of transport channels, as the result of the topological transitions, induces antisymmetric magneto-resistance spikes during the magnetization reversal. With the high Neel ordering temperature provided by the antiferromagnetic layers, the signature of the induced topological transition persists in transport measurements up to a temperature of around 90 K, a factor of three over the Curie temperature in a typical magnetically doped TI thin film.
A.A. Zyuzin
,M.D. Hook
,A.A. Burkov
.
(2011)
.
"Parallel magnetic field driven quantum phase transition in a thin topological insulator film"
.
Anton Burkov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا