Do you want to publish a course? Click here

First Interferometric Images of the 36 GHz Methanol Masers in the DR21 Complex

147   0   0.0 ( 0 )
 Added by Vincent L. Fish
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Class I methanol masers are believed to be produced in the shock-excited environment around star-forming regions. Many authors have argued that the appearance of various subsets of class I masers may be indicative of specific evolutionary stages of star formation or excitation conditions. Until recently, however, no major interferometer was capable of imaging the important 36 GHz transition. We report on Expanded Very Large Array observations of the 36 GHz methanol masers and Submillimeter Array observations of the 229 GHz methanol masers in DR21(OH), DR21N, and DR21W. The distribution of 36 GHz masers in the outflow of DR21(OH) is similar to that of the other class I methanol transitions, with numerous multitransition spatial overlaps. At the site of the main continuum source in DR21(OH), class I masers at 36 and 229 GHz are found in virtual overlap with class II 6.7 GHz masers. To the south of the outflow, the 36 GHz masers are scattered over a large region but usually do not appear coincident with 44 GHz masers. In DR21W we detect an S-curve signature in Stokes V that implies a large value of the magnetic field strength if interpreted as due to Zeeman splitting, suggesting either that class I masers may exist at higher densities than previously believed or that the direct Zeeman interpretation of S-curve Stokes V profiles in class I masers may be incorrect. We find a diverse variety of different maser phenomena in these sources, suggestive of differing physical conditions among them.



rate research

Read More

214 - Simon Ellingsen 2018
We have used the Australia Telescope Compact Array (ATCA) to undertake the first high angular resolution observations of 37.7-GHz ($7_{-2} - 8_{-1}E$) methanol masers towards a sample of eleven high-mass star formation regions which host strong 6.7-GHz methanol masers. The 37.7-GHz methanol sites are coincident to within the astrometric uncertainty (0.4 arcseconds) with the 6.7-GHz methanol masers associated with the same star formation region. However, spatial and spectral comparison of the 6.7- and 37.7-GHz maser emission within individual sources shows that the 37.7-GHz masers are less often, or to a lesser degree co-spatial than are the 12.2-GHz and 6.7-GHz masers. We also made sensitive, high angular resolution observations of the 38.3- and 38.5-GHz class II methanol transitions ($6_{2} - 5_{3}A^{-}$ and $6_{2} - 5_{3}A^{+}$, respectively) and the 36.2-GHz ($4_{-1} - 3_{0}E$) class I methanol transition towards the same sample of eleven sources. The 37.7-, 38.3- and 38.5-GHz methanol masers are unresolved in the current observations, which implies a lower limit on the brightness temperature of the strongest masers of more than $10^6$K. We detected the 38.3-GHz methanol transition towards 7 sources, 5 of which are new detections and detected the 38.5-GHz transition towards 6 sources, 4 of which are new detections. We detected 36.2-GHz class I methanol masers towards all eleven sources, 6 of these are new detections for this transition, of which 4 sources do not have previously reported class I methanol masers from any transition.
188 - K.L.J. Rygl 2009
Emission from the 6.7 GHz methanol maser transition is very strong, is relatively stable, has small internal motions, and is observed toward numerous massive star-forming regions in the Galaxy. Our goal is to perform high-precision astrometry using this maser transition to obtain accurate distances to their host regions. Eight strong masers were observed during five epochs of VLBI observations with the European VLBI Network between 2006 June, and 2008 March. We report trigonometric parallaxes for five star-forming regions, with accuracies as good as $sim22 mathrm{mu}$as. Distances to these sources are $2.57^{+0.34}_{-0.27}$ kpc for ON 1, $0.776^{+0.104}_{-0.083}$ kpc for L 1206, $0.929^{+0.034}_{-0.033}$ kpc for L 1287, $2.38^{+0.13}_{-0.12}$ kpc for NGC 281-W, and $1.59^{+0.07}_{-0.06}$ kpc for S 255. The distances and proper motions yield the full space motions of the star-forming regions hosting the masers, and we find that these regions lag circular rotation on average by $sim$17 km s$^{-1}$, a value comparable to those found recently by similar studies.
133 - J. S. Urquhart 2013
Using the 870-$mu$m APEX Telescope Large Area Survey of the Galaxy (ATLASGAL), we have identified 577 submillimetre continuum sources with masers from the methanol multibeam (MMB) survey in the region $280degr < ell < 20degr$; $|,b,| < 1.5degr$. 94,per,cent of methanol masers in the region are associated with sub-millimetre dust emission. We estimate masses for ~450 maser-associated sources and find that methanol masers are preferentially associated with massive clumps. These clumps are centrally condensed, with envelope structures that appear to be scale-free, the mean maser position being offset from the peak column density by 0.0 pm 4. Assuming a Kroupa initial mass function and a star-formation efficiency of ~30,per,cent, we find that over two thirds of the clumps are likely to form clusters with masses >20,msun. Furthermore, almost all clumps satisfy the empirical mass-size criterion for massive star formation. Bolometric luminosities taken from the literature for ~100 clumps range between ~100 and 10$^6$,lsun. This confirms the link between methanol masers and massive young stars for 90,per,cent of our sample. The Galactic distribution of sources suggests that the star-formation efficiency is significantly reduced in the Galactic-centre region, compared to the rest of the survey area, where it is broadly constant, and shows a significant drop in the massive star-formation rate density in the outer Galaxy. We find no enhancement in source counts towards the southern Scutum-Centaurus arm tangent at $ell ~ 315degr$, which suggests that this arm is not actively forming stars.
128 - S.P. Ellingsen 2011
We report the results of a search for class II methanol masers at 37.7, 38.3 and 38.5 GHz towards a sample of 70 high-mass star formation regions. We primarily searched towards regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesised to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا