Do you want to publish a course? Click here

High Resolution HDS/SUBARU chemical abundances of the young stellar cluster Palomar 1

107   0   0.0 ( 0 )
 Added by Lorenzo Monaco
 Publication date 2010
  fields Physics
and research's language is English
 Authors L. Monaco




Ask ChatGPT about the research

Context. Palomar,1 is a peculiar globular cluster (GC). It is the youngest Galactic GC and it has been tentatively associated to several of the substructures recently discovered in the Milky Way (MW), including the Canis Major (CMa) overdensity and the Galactic Anticenter Stellar Structure (GASS). Aims. In order to provide further insights into its origin, we present the first high resolution chemical abundance analysis for one red giant in Pal,1. Methods. We obtained high resolution (R=30000) spectra for one red giant star in Pal,1 using the High Dispersion Spectrograph (HDS) mounted at the SUBARU telescope. We used ATLAS-9 model atmospheres coupled with the SYNTHE and WIDTH calculation codes to derive chemical abundances from the measured line equivalent widths of 18 among $alpha$, Iron-peak, light and heavy elements. Results. The Palomar~1 chemical pattern is broadly compatible to that of the MW open clusters population and similar to disk stars. It is, instead, remarkably different from that of the Sagittarius (Sgr) dwarf spheroidal galaxy. Conclusions. If Pal,1 association with either CMa or GASS will be confirmed, this will imply that these systems had a chemical evolution similar to that of the Galactic disk.



rate research

Read More

A comprehensive abundance analysis providing rare insight into the chemical history of lead stars is still lacking. We present results from high resolution (R ~ 50000), spectral analyses of three CH stars, HD 26, HD 198269, HD 224959, and, a carbon star with a dusty envelope, HD 100764. Previous studies on these objects are limited by both resolution and wavelength regions and the results differ significantly from each other. We have undertaken to re-analyse the chemical composition of these objects based on high resolution Subaru spectra covering the wavelength regions 4020 to 6775 A,. Considering local thermodynamic equilibrium and using model atmospheres, we have derived the stellar parameters, the effective temperatures Teff, surface gravities log g, and metallicities [Fe/H] for these objects. The derived parameters for HD 26, HD 100764, HD 198269 and HD 224959 are (5000, 1.6, -1.13), (4750, 2.0 -0.86), (4500, 1.5, -2.06) and (5050, 2.1, -2.44) respectively. The stars are found to exhibit large enhancements of heavy elements relative to iron in conformity to previous studies. Large enhancement of Pb with respect to iron is also confirmed. Updates on the elemental abundances for several s-process elements (Y, Zr, La, Ce, Nd, Sm, Pb) along with the first-time estimates of abundances for a number of other heavy elements (Sr, Ba, Pr, Eu, Er, W) are reported. Our analysis suggests that neutron-capture elements in HD 26 primarily originate in s-process while the major contributions to the abundances of neutron-capture elements in the more metal-poor objects HD 224959 and HD 198269 are from r-process, possibly formed from materials that are pre-enriched with products of r-process.
We estimate chemical abundances and ionization parameters in the nuclear region of a sample of 143 galaxies from the Palomar Spectroscopic Survey, composed by Star-Forming Galaxies (87), Seyferts 2 (16) and LINERs (40) using the textsc{Hii-Chi-mistry} code. We also study for each spectral type the correlation of the derived quantities with other different properties of the host galaxies, such as morphology, stellar mass, luminosity and mass of their Supermassive Black Holes. The results obtained for Star-Forming Galaxies are used to check the soundness of our methodology. Then, we replicate a similar study for our sample of AGN, distinguishing between Seyferts 2 and LINERs. We report a saturation of Oxygen abundances for the nuclear regions of SFG. The correlations between chemical abundances and their host galaxy properties for SFG are in good agreement with previous studies. We find that Seyferts 2 present slightly higher chemical abundances but this result must be reexamined in larger samples of Seyfert galaxies. In contrast, we obtain lower chemical abundances for LINERs than for SFG. We confirm these relatively lower abundances for another sample of infrared luminous LINERs in the same stellar mass range. Our analysis of AGNs (both LINERs and Seyferts) shows that their host galaxy properties are not correlated with our estimated chemical abundances.
We use integrated-light spectroscopic observations to measure metallicities and chemical abundances for two extragalactic young massive star clusters (NGC1313-379 and NGC1705-1). The spectra were obtained with the X-Shooter spectrograph on the ESO Very Large Telescope. We compute synthetic integrated-light spectra, based on colour-magnitude diagrams for the brightest stars in the clusters from Hubble Space Telescope photometry and theoretical isochrones. Furthermore, we test the uncertainties arising from the use of Colour Magnitude Diagram (CMD) +Isochrone method compared to an Isochrone-Only method. The abundances of the model spectra are iteratively adjusted until the best fit to the observations is obtained. In this work we mainly focus on the optical part of the spectra. We find metallicities of [Fe/H] = $-$0.84 $pm$ 0.07 and [Fe/H] = $-$0.78 $pm$ 0.10 for NGC1313-379 and NGC1705-1, respectively. We measure [$alpha$/Fe]=$+$0.06 $pm$ 0.11 for NGC1313-379 and a super-solar [$alpha$/Fe]=$+$0.32 $pm$ 0.12 for NGC1705-1. The roughly solar [$alpha$/Fe] ratio in NGC1313-379 resembles those for young stellar populations in the Milky Way (MW) and the Magellanic Clouds, whereas the enhanced [$alpha$/Fe] ratio in NGC1705-1 is similar to that found for the cluster NGC1569-B by previous studies. Such super-solar [$alpha$/Fe] ratios are also predicted by chemical evolution models that incorporate the bursty star formation histories of these dwarf galaxies. Furthermore, our $alpha$-element abundances agree with abundance measurements from H II regions in both galaxies. In general we derive Fe-peak abundances similar to those observed in the MW and Large Magellanic Cloud (LMC) for both young massive clusters. For these elements, however, we recommend higher-resolution observations to improve the Fe-peak abundance measurements.
315 - J. E. Colucci 2009
We report the first detailed chemical abundances for 5 globular clusters (GCs) in M31 from high-resolution (R ~ 25,000) spectroscopy of their integrated light. These GCs are the first in a larger set of clusters observed as part of an ongoing project to study the formation history of M31 and its globular cluster population. The data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope, and are analyzed using a new integrated light spectra analysis method that we have developed. In these clusters, we measure abundances for Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, and Ba, ages >10 Gyrs, and a range in [Fe/H] of -0.9 to -2.2. As is typical of Milky Way GCs, we find these M31 GCs to be enhanced in the alpha-elements Ca, Si, and Ti relative to Fe. We also find [Mg/Fe] to be low relative to other [alpha/Fe], and [Al/Fe] to be enhanced in the integrated light abundances. These results imply that abundances of Mg, Al (and likely O, Na) recovered from integrated light do display the inter- and intra-cluster abundance variations seen in individual Milky Way GC stars, and that special care should be taken in the future in interpreting low or high resolution integrated light abundances of globular clusters that are based on Mg-dominated absorption features. Fe-peak and the neutron-capture elements Ba and Y also follow Milky Way abundance trends. We also present high-precision velocity dispersion measurements for all 5 M31 GCs, as well as independent constraints on the reddening toward the clusters from our analysis.
75 - Fabio Bresolin 2016
We present spectra of 14 A-type supergiants in the metal-rich spiral galaxy M83. We derive stellar parameters and metallicities, and measure a spectroscopic distance modulus m-M = 28.47 +- 0.10 (4.9 +- 0.2 Mpc), in agreement with other methods. We use the stellar characteristic metallicity of M83 and other systems to discuss a version of the galaxy mass-metallicity relation that is independent of the analysis of nebular emission lines and the associated systematic uncertainties. We reproduce the radial metallicity gradient of M83, which flattens at large radii, with a chemical evolution model, constraining gas inflow and outflow processes. We carry out a comparative analysis of the metallicities we derive from the stellar spectra and published HII region line fluxes, utilizing both the direct, Te-based method and different strong-line abundance diagnostics. The direct abundances are in relatively good agreement with the stellar metallicities, once we apply a modest correction to the nebular oxygen abundance due to depletion onto dust. Popular empirically calibrated strong-line diagnostics tend to provide nebular abundances that underestimate the stellar metallicities above the solar value by ~0.2 dex. This result could be related to difficulties in selecting calibration samples at high metallicity. The O3N2 method calibrated by Pettini and Pagel gives the best agreement with our stellar metallicities. We confirm that metal recombination lines yield nebular abundances that agree with the stellar abundances for high metallicity systems, but find evidence that in more metal-poor environments they tend to underestimate the stellar metallicities by a significant amount, opposite to the behavior of the direct method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا