The spectral problem for matrices with a block-hierarchical structure is often considered in context of the theory of complex systems. In the present article, a new class of matrices with a block-rectangular non-symmetric hierarchical structure is introduced and the corresponding spectral problem is investigated. Using these results we study a model of error generation in information sequence where such block-rectangular hierarchical matrices appear in a natural way.
We are interested in the phenomenon of the essential spectrum instability for a class of unbounded (block) Jacobi matrices. We give a series of sufficient conditions for the matrices from certain classes to have a discrete spectrum on a half-axis of a real line. An extensive list of examples showing the sharpness of obtained results is provided.
The eigenvalues of the matrix structure $X + X^{(0)}$, where $X$ is a random Gaussian Hermitian matrix and $X^{(0)}$ is non-random or random independent of $X$, are closely related to Dyson Brownian motion. Previous works have shown how an infinite hierarchy of equations satisfied by the dynamical correlations become triangular in the infinite density limit, and give rise to the complex Burgers equation for the Greens function of the corresponding one-point density function. We show how this and analogous partial differential equations, for chiral, circular and Jaco
We investigate the level density for several ensembles of positive random matrices of a Wishart--like structure, $W=XX^{dagger}$, where $X$ stands for a nonhermitian random matrix. In particular, making use of the Cauchy transform, we study free multiplicative powers of the Marchenko-Pastur (MP) distribution, ${rm MP}^{boxtimes s}$, which for an integer $s$ yield Fuss-Catalan distributions corresponding to a product of $s$ independent square random matrices, $X=X_1cdots X_s$. New formulae for the level densities are derived for $s=3$ and $s=1/3$. Moreover, the level density corresponding to the generalized Bures distribution, given by the free convolution of arcsine and MP distributions is obtained. We also explain the reason of such a curious convolution. The technique proposed here allows for the derivation of the level densities for several other cases.
We study spectral densities for systems on lattices, which, at a phase transition display, power-law spatial correlations. Constructing the spatial correlation matrix we prove that its eigenvalue density shows a power law that can be derived from the spatial correlations. In practice time series are short in the sense that they are either not stationary over long time intervals or not available over long time intervals. Also we usually do not have time series for all variables available. We shall make numerical simulations on a two-dimensional Ising model with the usual Metropolis algorithm as time evolution. Using all spins on a grid with periodic boundary conditions we find a power law, that is, for large grids, compatible with the analytic result. We still find a power law even if we choose a fairly small subset of grid points at random. The exponents of the power laws will be smaller under such circumstances. For very short time series leading to singular correlation matrices we use a recently developed technique to lift the degeneracy at zero in the spectrum and find a significant signature of critical behavior even in this case as compared to high temperature results which tend to those of random matrix models.
The operator associated to the angular part of the Dirac equation in the Kerr-Newman background metric is a block operator matrix with bounded diagonal and unbounded off-diagonal entries. The aim of this paper is to establish a variational principle for block operator matrices of this type and to derive thereof upper and lower bounds for the angular operator mentioned above. In the last section, these analytic bounds are compared to numerical values from the literature.