Do you want to publish a course? Click here

Quantum networks reveal quantum nonlocality

387   0   0.0 ( 0 )
 Added by Mafalda Almeida
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The results of local measurements on some composite quantum systems cannot be reproduced classically. This impossibility, known as quantum nonlocality, represents a milestone in the foundations of quantum theory. Quantum nonlocality is also a valuable resource for information processing tasks, e.g. quantum communication, quantum key distribution, quantum state estimation, or randomness extraction. Still, deciding if a quantum state is nonlocal remains a challenging problem. Here we introduce a novel approach to this question: we study the nonlocal properties of quantum states when distributed and measured in networks. Using our framework, we show how any one-way entanglement distillable state leads to nonlocal correlations. Then, we prove that nonlocality is a non-additive resource, which can be activated. There exist states, local at the single-copy level, that become nonlocal when taking several copies of it. Our results imply that the nonlocality of quantum states strongly depends on the measurement context.



rate research

Read More

74 - Ming-Xing Luo 2018
The multipartite correlations derived from local measurements on some composite quantum systems are inconsistent with those reproduced classically. This inconsistency is known as quantum nonlocality and shows a milestone in the foundations of quantum theory. Still, it is NP hard to decide a nonlocal quantum state. We investigate an extended question: how to characterize the nonlocal properties of quantum states that are distributed and measured in networks. We first prove the generic tripartite nonlocality of chain-shaped quantum networks using semiquantum nonlocal games. We then introduce a new approach to prove the generic activated nonlocality as a result of entanglement swapping for all bipartite entangled states. The result is further applied to show the multipartite nonlocality and activated nonlocality for all nontrivial quantum networks consisting of any entangled states. Our results provide the nonlocality witnesses and quantum superiorities of all connected quantum networks or nontrivial hybrid networks in contrast to classical networks.
We show that for all $nge3$, an example of an $n$-partite quantum correlation that is not genuinely multipartite nonlocal but rather exhibiting anonymous nonlocality, that is, nonlocal but biseparable with respect to all bipartitions, can be obtained by locally measuring the $n$-partite Greenberger-Horne-Zeilinger (GHZ) state. This anonymity is a manifestation of the impossibility to attribute unambiguously the underlying multipartite nonlocality to any definite subset(s) of the parties, even though the correlation can indeed be produced by nonlocal collaboration involving only such subsets. An explicit biseparable decomposition of these correlations is provided for any partitioning of the $n$ parties into two groups. Two possible applications of these anonymous GHZ correlations in the device-independent setting are discussed: multipartite secret sharing between any two groups of parties and bipartite quantum key distribution that is robust against nearly arbitrary leakage of information.
What violations of Bell inequalities teach us is that the world is quantum mechanical, i.e., nonclassical. Assertions that they imply the world is nonlocal arise from ignoring differences between quantum and classical physics.
Recently the authors in [Phys. Rev. Lett. 125, 090401 (2020)] considered the following scenario: Alice and Bob each have half of a pair of entangled qubit state. Bob measures his half and then passes his part to a second Bob who measures again and so on. The goal is to maximize the number of Bobs that can have an expected violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality with the single Alice. By taking the maximally entangled pure two-qubit state as an example, it has been constructively proved that arbitrarily many independent Bobs can share the nonlocality with the single Alice. Here we demonstrate that arbitrarily many independent observers can share the nonlocality of a single arbitrary dimensional bipartite entangled but not necessary two-qubit entangled state. Further, taking the generalized GHZ states as an example, we show that at most two Charlies can share the genuine nonlocality of a single generalized GHZ state with an Alice and a Bob.
Via nonlocality distillation, a number of copies of a given nonlocal correlation can be turned into a new correlation displaying a higher degree of nonlocality. Apart from its clear relevance in situations where nonlocality is a resource, distillation protocols also play an important role in the understanding of information-theoretical principles for quantum theory. Here, we derive a necessary condition for nonlocality distillation from two copies and apply it, among other results, to show that $1$D and $2$D quantum voids --faces of the nonlocal simplex set with no quantum realization-- can be distilled up to PR-boxes. With that, we generalize previous results in the literature. For instance, showing a broad class of post-quantum correlations that make communication complexity trivial and violate the information causality principle.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا