Do you want to publish a course? Click here

Detection of an ultra-bright submillimeter galaxy in the Subaru/XMM-Newton Deep Field using AzTEC/ASTE

95   0   0.0 ( 0 )
 Added by Soh Ikarashi
 Publication date 2010
  fields Physics
and research's language is English
 Authors S. Ikarashi




Ask ChatGPT about the research

We report the detection of an extremely bright ($sim$37 mJy at 1100 $mu$m and $sim$91 mJy at 880 $mu$m) submillimeter galaxy (SMG), AzTEC-ASTE-SXDF1100.001 (hereafter referred to as SXDF1100.001 or Orochi), discovered in 1100 $mu$m observations of the Subaru/XMM-Newton Deep Field using AzTEC on ASTE. Subsequent CARMA 1300 $mu$m and SMA 880 $mu$m observations successfully pinpoint the location of Orochi and suggest that it has two components, one extended (FWHM of $sim$ 4$^{primeprime}$) and one compact (unresolved). Z-Spec on CSO has also been used to obtain a wide band spectrum from 190 to 308 GHz, although no significant emission/absorption lines are found. The derived upper limit to the line-to-continuum flux ratio is 0.1--0.3 (2 $sigma$) across the Z-Spec band. Based on the analysis of the derived spectral energy distribution from optical to radio wavelengths of possible counterparts near the SMA/CARMA peak position, we suggest that Orochi is a lensed, optically dark SMG lying at $z sim 3.4$ behind a foreground, optically visible (but red) galaxy at $z sim 1.4$. The deduced apparent (i.e., no correction for magnification) infrared luminosity ($L_{rm IR}$) and star formation rate (SFR) are $6 times 10^{13}$ $L_{odot}$ and 11000 $M_{odot}$ yr$^{-1}$, respectively, assuming that the $L_{rm IR}$ is dominated by star formation. These values suggest that Orochi will consume its gas reservoir within a short time scale ($3 times 10^{7}$ yr), which is indeed comparable to those in extreme starbursts like the centres of local ULIRGs.



rate research

Read More

We report the discovery of a new ultra-bright submillimeter galaxy (SMG) behind the Small Magellanic Cloud (SMC). This SMG is detected as a 43.3+-8.4 mJy point source (MM J01071-7302, hereafter MMJ0107) in the 1.1 mm continuum survey of the SMC by AzTEC on the ASTE telescope. MMJ0107 is also detected in the radio (843 MHz), Herschel/SPIRE, Spitzer MIPS 24 {mu}m, all IRAC bands, Wide-field Infrared Survey Explorer, and near-infrared (J, H, KS). We find an optical (U, B, V) source, which might be the lensing object, at a distance of 1.4 arcsec from near-infrared and IRAC sources. Photometric redshift estimates for the SMG using representative spectral energy distribution templates show the redshifts of 1.4-3.9. We estimate total far-infrared luminosity of (0.3-2.2)x10^14 {mu}^-1 L_sun and a star formation rate of 5600-39, 000 {mu}^-1 M_sun yr^-1, where {mu} is the gravitational magnification factor. This apparent extreme star formation activity is likely explained by a highly magnified gravitational lens system.
We present results of a 1.1 mm deep survey of the AKARI Deep Field South (ADF-S) with AzTEC mounted on the Atacama Submillimetre Telescope Experiment (ASTE). We obtained a map of 0.25 sq. deg area with an rms noise level of 0.32-0.71 mJy. This is one of the deepest and widest maps thus far at millimetre and submillimetre wavelengths. We uncovered 198 sources with a significance of 3.5-15.6 sigma, providing the largest catalog of 1.1 mm sources in a contiguous region. Most of the sources are not detected in the far-infrared bands of the AKARI satellite, suggesting that they are mostly at z ~ 1.5 given the detection limits. We constructed differential and cumulative number counts in the ADF-S, the Subaru/XMM Newton Deep Field (SXDF), and the SSA 22 field surveyed by AzTEC/ASTE, which provide currently the tightest constraints on the faint end. The integration of the best-fit number counts in the ADF-S find that the contribution of 1.1 mm sources with fluxes >=1 mJy to the cosmic infrared background (CIB) at 1.1 mm is 12-16%, suggesting that the large fraction of the CIB originates from faint sources of which the number counts are not yet constrained. We estimate the cosmic star-formation rate density contributed by 1.1 mm sources with >=1 mJy using the best-fit number counts in the ADF-S and find that it is lower by about a factor of 5-10 compared to those derived from UV/optically-selected galaxies at z ~ 2-3. The fraction of stellar mass of the present-day universe produced by 1.1 mm sources with >=1 mJy at z >= 1 is ~20%, calculated by the time integration of the star-formation rate density. If we consider the recycled fraction of >0.4, which is the fraction of materials forming stars returned to the interstellar medium, the fraction of stellar mass produced by 1.1 mm sources decrease to <~10%.
We present measurements of the rates of high-redshift Type Ia supernovae derived from the Subaru/XMM-Newton Deep Survey (SXDS). We carried out repeat deep imaging observations with Suprime-Cam on the Subaru Telescope, and detected 1040 variable objects over 0.918 deg$^2$ in the Subaru/XMM-Newton Deep Field. From the imaging observations, light curves in the observed $i$-band are constructed for all objects, and we fit the observed light curves with template light curves. Out of the 1040 variable objects detected by the SXDS, 39 objects over the redshift range $0.2 < z < 1.4$ are classified as Type Ia supernovae using the light curves. These are among the most distant SN Ia rate measurements to date. We find that the Type Ia supernova rate increase up to $z sim 0.8$ and may then flatten at higher redshift. The rates can be fitted by a simple power law, $r_V(z)=r_0(1+z)^alpha$ with $r_0=0.20^{+0.52}_{-0.16}$(stat.)$^{+0.26}_{-0.07}$(syst.)$times 10^{-4} {rm yr}^{-1}{rm Mpc}^{-3}$, and $alpha=2.04^{+1.84}_{-1.96}$(stat.)$^{+2.11}_{-0.86}$(syst.).
The XMM-Newton Distant Cluster Project (XDCP) aims at the identification of a well defined sample of X-ray selected clusters of galaxies at redshifts z>0.8. We present a catalogue of the extended sources in one the deepest ~250 ksec XMM-Newton fields targeting LBQS 2215-175 covering the CFHTLS deep field four. The cluster identification is based, among others, on deep imaging with the ESO VLT and from the CFHT legacy survey. The confirmation of cluster candidates is done by VLT/FORS2 multi-object spectroscopy. Photometric redshifts from the CFHTLS D4 are utilized to confirm the effectiveness of the X-ray cluster selection method. The survey sensitivity is computed with extensive simulations. At a flux limit of S(0.5-2.0 keV) ~ 2.5e-15 erg/s we achieve a completeness level higher than 50% in an area of ~0.13 square degrees. We detect six galaxy clusters above this limit with optical counterparts, of which 5 are new spectroscopic discoveries. Two newly discovered X-ray luminous galaxy clusters are at z>1.0, another two at z=0.41 and one at z=0.34. For the most distant X-ray selected cluster in this field at z=1.45 we find additional (active) member galaxies from both X-ray and spectroscopic data. Additionally, we find evidence of large scale structures at moderate redshifts of z=0.41 and z=0.34. The quest for distant clusters in archival XMM-Newton data has led to the detection of six clusters in a single field, making XMM-Newton an outstanding tool for cluster surveys. Three of these clusters are at z>1, which emphasises the valuable contribution of small, yet deep surveys to cosmology. Beta-models are appropriate descriptions for the cluster surface brightness to perform cluster detection simulations in order to compute the X-ray selection function. The constructed logN-logS tends to favour a scenario where no evolution in the cluster X-ray luminosity function (XLF) takes place.
429 - J. E. Geach 2007
We present multi-object spectroscopy of galaxies in the immediate (Mpc-scale) environments of four low-power (L_1.4 GHz < 10^25 W/Hz) radio galaxies at z~0.5, selected from the Subaru/XMM-Newton Deep Field. We use the spectra to calculate velocity dispersions and central redshifts of the groups the radio galaxies inhabit, and combined with XMM-Newton (0.3-10 keV) X-ray observations investigate the L_X--sigma_v and T_X--sigma_v scaling relationships. All the radio galaxies reside in moderately rich groups -- intermediate environments between poor groups and rich clusters, with remarkably similar X-ray properties. We concentrate our discussion on our best statistical example that we interpret as a low-power (FRI) source triggered within a sub-group, which in turn is interacting with a nearby group of galaxies, containing the bulk of the X-ray emission for the system -- a basic scenario which can be compared to more powerful radio sources at both high (z>4) and low (z<0.1) redshifts. This suggests that galaxy-galaxy interactions triggered by group mergers may play an important role in the life-cycle of radio galaxies at all epochs and luminosities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا