Do you want to publish a course? Click here

Relativistic jets in Narrow-Line Seyfert 1

143   0   0.0 ( 0 )
 Added by Luigi Foschini
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Narrow-Line Seyfert 1 (NLS1) class of active galactic nuclei (AGNs) is generally radio-quiet, but a small percent of them are radio-loud. The recent discovery by Fermi/LAT of high-energy gamma-ray emission from 4 NLS1s proved the existence of relativistic jets in these systems. It is therefore important to study this new class of gamma-ray emitting AGNs. Here we report preliminary results about the observations of the July 2010 gamma-ray outburst of PMN J0948+0022, when the source flux exceeded for the first time 10^-6 ph cm^-2 s^-1 (E > 100 MeV).



rate research

Read More

Before the launch of the Fermi Gamma-ray Space Telescope satellite only two classes of active galactic nuclei (AGN) were known to generate relativistic jets and thus to emit up to the $gamma$-ray energy range: blazars and radio galaxies, both hosted in giant elliptical galaxies. The discovery by the Large Area Telescope (LAT) on-board the Fermi satellite of variable $gamma$-ray emission from a few radio-loud narrow-line Seyfert 1 galaxies (NLSy1) revealed the presence of an emerging third class of AGN with powerful relativistic jets. Considering that NLSy1 are usually hosted in late-type galaxies with relatively small black hole masses, this finding opened new challenging questions about the nature of these objects, the disc/jet connection, the emission mechanisms at high energies, and the formation of relativistic jets. In this review, I will discuss the broad-band properties of the $gamma$-ray-emitting NLSy1 included in the Fourth Fermi LAT source catalog, highlighting major findings and open questions regarding jet physics, black hole mass estimation, host galaxy and accretion process of these sources in the Fermi era.
104 - F. DAmmando 2016
The discovery by the Large Area Telescope on board Fermi of variable gamma-ray emission from radio-loud narrow-line Seyfert 1 (NLSy1) galaxies revealed the presence of a possible third class of Active Galactic Nuclei (AGN) with relativistic jets in addition to blazars and radio galaxies. Considering that NLSy1 are usually hosted in spiral galaxies, this finding poses intriguing questions about the nature of these objects and the formation of relativistic jets. We report on a systematic investigation of the gamma-ray properties of a sample of radio-loud NLSy1, including the detection of new objects, using 7 years of Fermi-LAT data with the new Pass 8 event-level analysis. In addition we discuss the radio-to-very-high-energy properties of the gamma-ray emitting NLSy1, their host galaxy, and black hole mass in the context of the blazar scenario and the unification of relativistic jets at different scales.
123 - F. DAmmando 2013
Before the launch of the Fermi satellite only two classes of AGNs were known to produce relativistic jets and thus emit up to the gamma-ray energy range: blazars and radio galaxies, both hosted in giant elliptical galaxies. The first four years of observations by the Large Area Telescope on board Fermi confirmed that these two are the most numerous classes of identified sources in the extragalactic gamma-ray sky, but the discovery of gamma-ray emission from 5 radio-loud narrow-line Seyfert 1 galaxies revealed the presence of a possible emerging third class of AGNs with relativistic jets. Considering that narrow-line Seyfert 1 galaxies seem to be typically hosted in spiral galaxy, this finding poses intriguing questions about the nature of these objects, the onset of production of relativistic jets, and the cosmological evolution of radio-loud AGN. Here, we discuss the radio-to-gamma-rays properties of the gamma-ray emitting narrow-line Seyfert 1 galaxies, also in comparison with the blazar scenario.
221 - F. DAmmando 2015
Before the launch of the Fermi satellite only two classes of Active Galactic Nuclei (AGN) were known to generate relativistic jets and thus to emit up to the gamma-ray energy range: blazars and radio galaxies, both hosted in giant elliptical galaxies. The first four years of observations by the Large Area Telescope (LAT) on board Fermi confirmed that these two populations represent the most numerous identified sources in the extragalactic gamma-ray sky, but the discovery of variable gamma-ray emission from 5 radio-loud Narrow-Line Seyfert 1 (NLSy1) galaxies revealed the presence of a possible emerging third class of AGN with relativistic jets. Considering that NLSy1 are thought to be hosted in spiral galaxies, this finding poses intriguing questions about the nature of these objects, the knowledge of the development of relativistic jets, and the evolution of radio-loud AGN. In this context, the study of the radio-loud NLSy1 from radio to gamma-rays has received increasing attention. Here we discuss the radio-to-gamma-rays properties of the gamma-ray emitting NLSy1, also in comparison with the blazar scenario.
121 - M. Orienti 2015
We report results on multiband observations from radio to gamma-rays of the two radio-loud narrow-line Seyfert 1 (NLSy1) galaxies PKS 2004-447 and J1548+3511. Both sources show a core-jet structure on parsec scale, while they are unresolved at the arcsecond scale. The high core dominance and the high variability brightness temperature make these NLSy1 galaxies good gamma-ray source candidates. Fermi-LAT detected gamma-ray emission only from PKS 2004-447, with a gamma-ray luminosity comparable to that observed in blazars. No gamma-ray emission is observed for J1548+3511. Both sources are variable in X-rays. J1548+3511 shows a hardening of the spectrum during high activity states, while PKS 2004-447 has no spectral variability. A spectral steepening likely related to the soft excess is hinted below 2 keV for J1548+3511, while the X-ray spectra of PKS 2004-447 collected by XMM-Newton in 2012 are described by a single power-law without significant soft excess. No additional absorption above the Galactic column density or the presence of an Fe line is detected in the X-ray spectra of both sources.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا