Do you want to publish a course? Click here

SEGUE-2 Limits on Metal-Rich Old-Population Hypervelocity Stars In the Galactic Halo

290   0   0.0 ( 0 )
 Added by Juna A. Kollmeier
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new limits on the ejection of metal-rich old-population hypervelocity stars from the Galactic center (GC) as probed by the SEGUE-2 survey. Our limits are a factor of 3-10 more stringent than previously reported, depending on stellar type. Compared to the known population of B-star ejectees, there can be no more than 30 times more metal-rich old-population F/G stars ejected from the GC. Because B stars comprise a tiny fraction of a normal stellar population, this places significant limits on a combination of the GC mass function and the ejection mechanism for hypervelocity stars. In the presence of a normal GC mass function, our results require an ejection mechanism that is about 5.5 times more efficient at ejecting B-stars compared to low-mass F/G stars.



rate research

Read More

139 - Juna A. Kollmeier 2008
We present limits on the ejection of old-population HVS from a sample of over 290,000 stars selected from the SDSS. We derive the speed at the solar circle from the measured positions and radial velocities by assuming a radial orbit and adopting a simple isothermal model of the Galactic halo, which enables us to identify candidate bound and unbound ejectees. We find 4 candidate bound F-stars from this sample, all with negative Galactocentric radial velocity (i.e., returning toward the GC). We additionally find 2 candidate unbound stars (one F and one G), however, existing proper motion measurements make these unlikely to be emerging from the GC. These data place an upper limit on the rate of ejection of old-population stars from the GC of ~45/Myr. Comparing to the rate for more massive B-star ejectees of ~0.5/Myr, our limit on the rate of ejection of old-population HVS shows that the mass function at the GC is not bottom-heavy and is consistent with being normal. Future targeted surveys of old-population HVS could determine if it is indeed top-heavy.
Hypervelocity stars (HVSs) travel from the Galactic Centre across the dark matter halo of the Milky Way, where they are observed with velocities in excess of the Galactic escape speed. Because of their quasi-radial trajectories, they represent a unique probe of the still poorly constrained dark matter component of the Galactic potential. In this paper, we present a new method to produce such constraints. Our likelihood is based on the local HVS density obtained by back-propagating the observed phase space position and quantifies the ejection probability along the orbit. To showcase our method, we apply it to simulated Gaia samples of $sim200$ stars in three realistic Galactic potentials with dark matter components parametrized by spheroidal NFW profiles. We find that individual HVSs exhibit a degeneracy in the scale mass-scale radius plane ($M_s-r_s$) and are able to measure only the combination $alpha = M_s/r_s^2$. Likewise, a degeneracy is also present between $alpha$ and the spheroidal axis-ratio $q$. In the absence of observational errors, we show the whole sample can nail down both parameters with {it sub-per cent} precision (about $1%$ and $0.1%$ for $alpha$ and $q$ respectively) with no systematic bias. This remarkable power to constrain deviations from a symmetric halo is a consequence of the Galactocentric origin of HVSs. To compare our results with other probes, we break the degeneracy in the scale parameters and impose a mass-concentration relation. The result is a competitive precision on the virial mass $M_{200}$ of about $10%$.
The mass assembly history of the Milky Way can inform both theory of galaxy formation and the underlying cosmological model. Thus, observational constraints on the properties of both its baryonic and dark matter contents are sought. Here we show that hypervelocity stars (HVSs) can in principle provide such constraints. We model the observed velocity distribution of HVSs, produced by tidal break-up of stellar binaries caused by Sgr A*. Considering a Galactic Centre (GC) binary population consistent with that inferred in more observationally accessible regions, a fit to current HVS data with significance level > 5% can only be obtained if the escape velocity from the GC to 50 kpc is $V_G < 850$ km/s, regardless of the enclosed mass distribution. When a NFW matter density profile for the dark matter halo is assumed, haloes with $V_G < 850$ km/s are in agreement with predictions in the $Lambda$CDM model and that a subset of models around $M_{200} sim 0.5-1.5 times 10^{12}$ solar masses and $r_s < 35$ kpc can also reproduce Galactic circular velocity data. HVS data alone cannot currently exclude potentials with $V_G > 850$ km/s. Finally, specific constraints on the halo mass from HVS data are highly dependent on the assumed baryonic mass potentials. This first attempt to simultaneously constrain GC and dark halo properties is primarily hampered by the paucity and quality of data. It nevertheless demonstrates the potential of our method, that may be fully realised with the ESA Gaia mission.
Hypervelocity stars (HVS) traverse the Galaxy from the central black hole to the outer halo. We show that the Galactic potential within 200 pc acts as a high pass filter preventing low velocity HVS from reaching the halo. To trace the orbits of HVS throughout the Galaxy, we construct two forms of the potential which reasonably represent the observations in the range 5--100,000 pc, a simple spherically symmetric model and a bulge-disk-halo model. We use the Hills mechanism (disruption of binaries by the tidal field of the central black hole) to inject HVS into the Galaxy and compute the observable spatial and velocity distributions of HVS with masses in the range 0.6--4 Msun. These distributions reflect the mass function in the Galactic Center, properties of binaries in the Galactic Center, and aspects of stellar evolution and the injection mechanism. For 0.6--4 Msun main sequence stars, the fraction of unbound HVS and the asymmetry of the velocity distribution for their bound counterparts increases with stellar mass. The density profiles for unbound HVS decline with distance from the Galactic Center approximately as r^{-2} (but are steeper for the most massive stars which evolve off the main sequence during their travel time from the Galactic Center); the density profiles for the bound ejecta decline with distance approximately as r^{-3}. In a survey with a limiting visual magnitude V of 23, the detectability of HVS (unbound or bound) increases with stellar mass.
150 - Ross Fadely 2011
We investigate the kinematic and photometric properties of the Segue 3 Milky Way companion using Keck/DEIMOS spectroscopy and Magellan/IMACS g and r-band imaging. Using maximum likelihood methods to analyze the photometry, we study the structure and stellar population of Segue 3. We find the half-light radius of Segue 3 is 26 +/- 5 (2.1 +/- 0.4 pc, for a distance of 17 kpc) and the absolute magnitude is a mere M_V = 0.0 +/- 0.8 mag, making Segue 3 the least luminous old stellar system known. We find Segue 3 to be consistent with a single stellar population, with an age of 12.0 +1.5/-0.4 Gyr and an [Fe/H] of -1.7 +0.07/-0.27. Line-of-sight velocities from the spectra are combined with the photometry to determine a sample of 32 stars which are likely associated with Segue 3. The member stars within three half-light radii have a velocity dispersion of 1.2 +/- 2.6 km/s. Photometry of the members indicates the stellar population has a spread in [Fe/H] of <0.3 dex. These facts, together with the small physical size of Segue 3, imply the object is likely an old, faint stellar cluster which contains no significant dark matter. We find tentative evidence for stellar mass loss in Segue 3 through the eleven candidate member stars outside of three half-light radii, as expected from dynamical arguments. Interpretation of the data outside of three half-light radii, is complicated by the objects spatial coincidence with a previously known halo substructure, which may enhance contamination of our member sample.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا