We study numerically the charge conductance distributions of disordered quantum spin-Hall (QSH) systems using a quantum network model. We have found that the conductance distribution at the metal-QSH insulator transition is clearly different from that at the metal-ordinary insulator transition. Thus the critical conductance distribution is sensitive not only to the boundary condition but also to the presence of edge states in the adjacent insulating phase. We have also calculated the point-contact conductance. Even when the two-terminal conductance is approximately quantized, we find large fluctuations in the point-contact conductance. Furthermore, we have found a semi-circular relation between the average of the point-contact conductance and its fluctuation.