No Arabic abstract
We study numerically the charge conductance distributions of disordered quantum spin-Hall (QSH) systems using a quantum network model. We have found that the conductance distribution at the metal-QSH insulator transition is clearly different from that at the metal-ordinary insulator transition. Thus the critical conductance distribution is sensitive not only to the boundary condition but also to the presence of edge states in the adjacent insulating phase. We have also calculated the point-contact conductance. Even when the two-terminal conductance is approximately quantized, we find large fluctuations in the point-contact conductance. Furthermore, we have found a semi-circular relation between the average of the point-contact conductance and its fluctuation.
We study the conductance of disordered graphene superlattices with short-range structural correlations. The system consists of electron- and hole-doped graphenes of various thicknesses, which fluctuate randomly around their mean value. The effect of the randomness on the probability of transmission through the system of various sizes is studied. We show that in a disordered superlattice the quasiparticle that approaches the barrier interface almost perpendicularly transmits through the system. The conductivity of the finite-size system is computed and shown that the conductance vanishes when the sample size becomes very large, whereas for some specific structures the conductance tends to a nonzero value in the thermodynamics limit.
We present first numerical studies of the disorder effect on the recently proposed intrinsic spin Hall conductance in a three dimensional (3D) lattice Luttinger model. The results show that the spin Hall conductance remains finite in a wide range of disorder strength, with large fluctuations. The disorder-configuration-averaged spin Hall conductance monotonically decreases with the increase of disorder strength and vanishes before the Anderson localization takes place. The finite-size effect is also discussed.
We study the local equilibrium properties of two-dimensional electron gases at high magnetic fields in the presence of random smooth electrostatic disorder, Rashba spin-orbit coupling, and the Zeeman interaction. Using a systematic magnetic length ($l_B$) expansion within a Greens function framework we derive quantum functionals for the local spin-resolved particle and current densities which can be useful for future studies combining disorder and mean-field electron-electron interaction in the quantum Hall regime. We point out that the spin polarization presents a peculiar spatial dependence which can be used to determine the strength of the Rashba coupling by local probes. The spatial structure of the current density, consisting of both compressible and incompressible contributions, also essentially reflects the effects of Rashba spin-orbit interaction on the energy spectrum. We show that in the semiclassical limit $l_B rightarrow 0$ the local Hall conductivity remains, however, still quantized in units of $e^2/h$ for any finite strength of the spin-orbit interaction. In contrast, it becomes half-integer quantized when the latter is infinite, a situation which corresponds to a disordered topological insulator surface consisting of a single Dirac cone. Finally, we argue how to define at high magnetic fields a spin Hall conductivity related to a dissipationless angular momentum flow, which is characterized by a sequence of plateaus as a function of the inverse magnetic field (thus free of resonances).
Superconducting wires with broken time-reversal and spin-rotational symmetries can exhibit two distinct topological gapped phases and host bound Majorana states at the phase boundaries. When the wire is tuned to the transition between these two phases and the gap is closed, Majorana states become delocalized leading to a peculiar critical state of the system. We study transport properties of this critical state as a function of the length $L$ of a disordered multichannel wire. Applying a non-linear supersymmetric sigma model of symmetry class D with two replicas, we identify the average conductance, its variance and the third cumulant in the whole range of $L$ from the Ohmic limit of short wires to the regime of a broad conductance distribution when $L$ exceeds the correlation length of the system. In addition, we calculate the average shot noise power and variance of the topological index for arbitrary $L$. The general approach developed in the paper can also be applied to study combined effects of disorder and topology in wires of other symmetries.
We investigate the emergence of long-range electron hopping mediated by cavity vacuum fields in disordered quantum Hall systems. We show that the counter-rotating (anti-resonant) light-matter interaction produces an effective hopping between disordered eigenstates within the last occupied Landau band. The process involves a number of intermediate states equal to the Landau degeneracy: each of these states consists of a virtual cavity photon and an electron excited in the next Landau band with the same spin. We study such a cavity-mediated hopping mechanism in the dual presence of a random disordered potential and a wall potential near the edges, accounting for both paramagnetic coupling and diamagnetic renormalization. We determine the cavity-mediated scattering rates, showing the impact on both bulk and edge states. The effect for edge states is shown to increase when their energy approaches the disordered bulk band, while for higher energy the edge states become asymptotically free. We determine the scaling properties while increasing the Landau band degeneracy. Consequences on the quantum Hall physics and future perspectives are discussed.