Do you want to publish a course? Click here

Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector

104   0   0.0 ( 0 )
 Added by Annarita Margiotta
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ANTARES high energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration. The zenith angular distribution of the atmospheric muon flux and the associated depth-intensity relation are measured and compared with previous measurements and Monte Carlo expectations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is presented.



rate research

Read More

High-energy neutrinos, arising from decays of mesons produced through the collisions of cosmic ray particles with air nuclei, form the background in the astrophysical neutrino detection problem. An ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. We present results of the calculation of the energy spectrum and zenith-angle distribution of the muon and electron atmospheric neutrinos in the energy range 10 GeV to 10 PeV. The calculation was performed with usage of known hadronic models (QGSJET-II-03, SIBYLL 2.1, Kimel & Mokhov) for two of the primary spectrum parametrizations, by Gaisser & Honda and by Zatsepin & Sokolskaya. The comparison of the calculated muon neutrino spectrum with the IceCube40 experiment data make it clear that even at energies above 100 TeV the prompt neutrino contribution is not so apparent because of tangled uncertainties of the strange (kaons) and charm (D-mesons) particle production cross sections. An analytic description of calculated neutrino fluxes is presented.
175 - Salvatore Mangano 2009
Recently different experiments mention to have observed a large scale cosmic-ray anisotropy at TeV energies, e.g. Milagro, Tibet and Super-Kamiokande. For these energies the cosmic-rays are expected to be nearly isotropic. Any measurements of cosmic-rays anisotropy could bring some information about propagation and origin of cosmic-rays. Though the primary aim of the ANTARES neutrino telescope is the detection of high energy cosmic neutrinos, the detector measures mainly down-doing muons, which are decay products of cosmic-rays collisions in the Earths atmosphere. This proceeding describes an anlaysis method for the first year measurement of down-going atmospheric muons at TeV energies in the ANTARES experiment, when five out of the final number of twelve lines were taking data.
Addressing the origin of the astrophysical neutrino flux observed by IceCube is of paramount importance. Gamma-Ray Bursts (GRBs) are among the few astrophysical sources capable of achieving the required energy to contribute to such neutrino flux through p$gamma$ interactions. In this work, ANTARES data have been used to search for upward going muon neutrinos in spatial and temporal coincidence with 784 GRBs occurred from 2007 to 2017. For each GRB, the expected neutrino flux has been calculated in the framework of the internal shock model and the impact of the lack of knowledge on the majority of source redshifts and on other intrinsic parameters of the emission mechanism has been quantified. It is found that the model parameters that set the radial distance where shock collisions occur have the largest impact on neutrino flux expectations. In particular, the bulk Lorentz factor of the source ejecta and the minimum variability timescale are found to contribute significantly to the GRB-neutrino flux uncertainty. For the selected sources, ANTARES data have been analysed, by maximising the discovery probability of the stacking sample through an extended maximum-likelihood strategy. Since no neutrino event passed the quality cuts set by the optimisation procedure, 90% confidence level upper limits (with their uncertainty) on the total expected diffuse neutrino flux have been derived, according to the model. The GRB contribution to the observed diffuse astrophysical neutrino flux around 100 TeV is constrained to be less than 10%.
The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $sim$10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for photomultipliers on different lines at a precision level of 0.5 ns. It has also been validated for calibrating photomultipliers on the same line, using a system of LEDs and laser light devices.
One of the main objectives of the ANTARES telescope is the search for point-like neutrino sources. Both the pointing accuracy and the angular resolution of the detector are important in this context and a reliable way to evaluate this performance is needed. In order to measure the pointing accuracy of the detector, one possibility is to study the shadow of the Moon, i.e. the deficit of the atmospheric muon flux from the direction of the Moon induced by the absorption of cosmic rays. Analysing the data taken between 2007 and 2016, the Moon shadow is observed with $3.5sigma$ statistical significance. The detector angular resolution for downward-going muons is 0.73$^{circ}pm0.14^{circ}.$ The resulting pointing performance is consistent with the expectations. An independent check of the telescope pointing accuracy is realised with the data collected by a shower array detector onboard of a ship temporarily moving around the ANTARES location.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا