We provide a scheme for the generation of entangled number states of Bose-Einstein condensates in multiple wells with cyclic pairwise connectivity. The condensate ground state in a multiple well trap can self-evolve, when phase engineered with specific initial phase differences between the neighboring wells, to a macroscopic superposition state with controllable entanglement -- to multiple well generalization of double well NOON states. We demonstrate through numerical simulations the creation of entangled states in three and four wells and then explore the creation of larger entangled states where there are either a larger number of particles in each well or a larger number of wells. The type of entanglement produced as the particle numbers, or interaction strength, increases changes in a novel and initially unexpected manner.