The quantum ground state of self-organized atomic crystals in optical resonators


Abstract in English

Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, can self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode, and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization, by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott-insulator or a superfluid, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the system is superfluid. These states could be realized in existing experimental setups.

Download