We give an elementary proof of the well-known fact that the third cohomology group H^3(G, M) of a group G with coefficients in an abelian G-module M is in bijection to the set Ext^2(G, M) of equivalence classes of crossed module extensions of G with M.
For a number ring $mathcal{O}$, Borel and Serre proved that $text{SL}_n(mathcal{O})$ is a virtual duality group whose dualizing module is the Steinberg module. They also proved that $text{GL}_n(mathcal{O})$ is a virtual duality group. In contrast to $text{SL}_n(mathcal{O})$, we prove that the dualizing module of $text{GL}_n(mathcal{O})$ is sometimes the Steinberg module, but sometimes instead is a variant that takes into account a sort of orientation. Using this, we obtain vanishing and nonvanishing theorems for the cohomology of $text{GL}_n(mathcal{O})$ in its virtual cohomological dimension.
The main aim of this paper is the construction of a smooth (sometimes called differential) extension hat{MU} of the cohomology theory complex cobordism MU, using cycles for hat{MU}(M) which are essentially proper maps Wto M with a fixed U(n)-structure and U(n)-connection on the (stable) normal bundle of Wto M. Crucial is that this model allows the construction of a product structure and of pushdown maps for this smooth extension of MU, which have all the expected properties. Moreover, we show, using the Landweber exact functor principle, that hat{R}(M):=hat{MU}(M)otimes_{MU^*}R defines a multiplicative smooth extension of R(M):=MU(M)otimes_{MU^*}R whenever R is a Landweber exact MU*-module. An example for this construction is a new way to define a multiplicative smooth K-theory.
For a central perfect extension of groups $A rightarrowtail G twoheadrightarrow Q$, we study the maps $H_3(A,mathbb{Z}) to H_3(G, mathbb{Z})$ and $H_3(G, mathbb{Z}) to H_3(Q, mathbb{Z})$ provided that $Asubseteq G$. First we show that the image of $H_3(A, mathbb{Z})to H_3(G, mathbb{Z})/rho_ast(Aotimes_mathbb{Z} H_2(G, mathbb{Z}))$ is $2$-torsion where $rho: A times G to G$ is the usual product map. When $BQ^+$ is an $H$-space, we also study the kernel of the surjective homomorphism $H_3(G, mathbb{Z}) to H_3(Q, mathbb{Z})$.
Prolongations of a group extension can be studied in a more general situation that we call group extensions of the co-type of a crossed module. Cohomology classification of such extensions is obtained by applying the obstruction theory of monoidal functors.