No Arabic abstract
From Doppler tracking data and data on circular motion of astronomical objects we obtain a metric of the Pioneer Anomaly. The metric resolves the issue of manifest absence of anomaly acceleration in orbits of the outer planets and extra-Pluto objects of the Solar system. However, it turns out that the energy-momentum tensor of matter, which generates such a gravitational field in GR, violates energy dominance conditions. At the same time the equation of state derived from the energy-momentum tensor is that of dark energy with $w=-1/3$. So the model proposed must be carefully studied by Grand-Fit investigations.
On the basis of the nonisometric transformations subgroup of the SO(4.2) group, the nonlinear time inhomogeneity one-parameter conformal transformations are constructed. The connection between the group parameter and the Hubble constant H0 is established. It is shown that the existence of an anomalous blue-shifted frequency drift is a pure kinematic manifestation of the time inhomogeneity induced by the Universe expansion. This conclusion is confirmed via a generalization of the standard Special Relativity clock synchronization procedure to the space expanding case. The obtained formulae are in accordance with the observable Pioneer Anomaly effect. The anomalous blue-shifted drift is universal, does not depend on the presence of graviting centers and can be, in principle, observed on any frequencies under suitable experimental conditions. The explicit analytic expression for the speed of recession--intergalactic distance ratio is obtained in the form of a function of the red shift z valid in the whole range of its variation. In the small z limit this expression exactly reproduces the Hubble law. The maximum value of this function at z=0.475 quantitatively corresponds to the experimentally found value z(exp) = 0.46 +/- 0.13 of the transition from the decelerated to the accelerated expansion of the Universe.
The description of the cosmological expansion and its possible local manifestations via treating the proper conformal transformations as a coordinate transformation from a comoving Lorentz reference frame (RF) to an uniformly accelerated RF is given. The explicit form of the conformal deformation of time is established. The expression defining the location cosmological distance in the form of simple function on the red shift is obtained. By coupling it with the well known relativistic formula defining the relative velocity of the mutually moving apart source and receiver of the signal, the explicit analytic expression for the Hubble law is obtained. The connection between acceleration and the Hubble constant follows therefrom immediately. The expression for the conformal time deformation in the small time limit leads to the quadratic time nonlinearity. Being applied to describe the location-type experiments, this predicts the existence of the uniformly changing blue-shifted frequency drift. Phenomenon of the Pioneer Anomaly (PA) is treated as the first of such a kind of effects discovered experimentally. The obtained formulae reproduce the PA experimental data. The expression generalizing the conventional Hubble law reproduces the experimentally observed phenomenon which in the frame of the conventional cosmological paradigm is treated as the transition from the decelerated expansion of the Universe to the accelerated one.
The description of the cosmological expansion and its possible local manifestations via treating the proper conformal transformations as a coordinate transformation from a comoving Lorentz reference frame to an uniformly accelerated one is given. The explicit form of the conformal time inhomogeneity is established. The expression defining the location cosmological distance in the form of simple function on the red shift is obtained. By coupling it with the relativistic formula for the longitudinal Doppler effect, the explicit expression for the Hubble law is obtained, which gives rise to the connection between acceleration and the Hubble constant. The expression generalizing the conventional Hubble law reproduces kinematically the experimentally observed phenomenon treated conventionally as a Dark Energy manifestation. The conformal time deformation in the small time limit leads to the quadratic time nonlinearity. Being applied to describe the location-type experiments, this predicts the existence of the universal uniformly changing blue-shifted frequency drift. The obtained formulae reproduce the Pioneer Anomaly experimental data.
We study the infrared effective theory of gravity that stems from the quantum trace anomaly. Quantum fluctuations of the metric induce running of the cosmological constant and the Newton constant at cosmological scales. By imposing the generalized Bianchi identity we obtain a prediction for the scale dependence of the dark matter and dark energy densities in terms of the parameters of the underlying conformal theory. For certain values of the model parameters the dark energy equation of state and the observed spectral index of the primordial density fluctuations can be simultaneously reproduced.
The gravitational energy shift for photons is extended to all mass-equivalent energies $E = mc^2$, obeying the quantum condition $E = h u$.On an example of a relativistic binary system, it was shown that the gravitational energy shift would imply,in contrast to Newtonian gravity, the gravitational attraction between full mass-equivalent energies. The corresponding space-time metric becomes exponential. A good agreement was found with all results of weak field tests of General relativity. The strong field effects in a binary system can be easily studied. A long standing problems of Pioneer and other flyby anomalies were also discussed in connection with the violation of total energy conservation. It was shown that relatively small energy non-conservation during the change of the orbit type could explain these persistent anomalies.