No Arabic abstract
The James Webb Space Telescope (JWST), due to launch in 2014, shall provide an unprecedented wealth of information in the near and mid-infrared wavelengths, thanks to its high-sensitivity instruments and its 6.5 m primary mirror, the largest ever launched into space. NIRSpec and MIRI, the two spectrographs onboard JWST, will play a key role in the study of the spectral features of Active Galactic Nuclei in the 0.6-28 micron wavelength range. This talk aims at presenting an overview of the possibilities provided by these two instruments, in order to prepare the astronomical community for the JWST era.
We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the Active Galactic Nuclei (AGN) detected by Fermi during its first year of operation, with the largest datasets ever used for this purpose. We use both archival interferometric 8.4 GHz data (from the VLA and ATCA, for the full sample of 599 sources) and concurrent single-dish 15 GHz measurements from the Owens Valley Radio Observatory (OVRO, for a sub sample of 199 objects). Our unprecedentedly large sample permits us to assess with high accuracy the statistical significance of the correlation, using a surrogate-data method designed to simultaneously account for common-distance bias and the effect of a limited dynamical range in the observed quantities. We find that the statistical significance of a positive correlation between the cm radio and the broad band (E>100 MeV) gamma-ray energy flux is very high for the whole AGN sample, with a probability <1e-7 for the correlation appearing by chance. Using the OVRO data, we find that concurrent data improve the significance of the correlation from 1.6e-6 to 9.0e-8. Our large sample size allows us to study the dependence of correlation strength and significance on specific source types and gamma-ray energy band. We find that the correlation is very significant (chance probability <1e-7) for both FSRQs and BL Lacs separately; a dependence of the correlation strength on the considered gamma-ray energy band is also present, but additional data will be necessary to constrain its significance.
Context. It will soon become possible to directly link the most accurate radio reference frame with the Gaia optical reference frame using many common extragalactic objects. It is important to know the level of coincidence between the radio and optical positions of compact active galactic nuclei (AGN). Aims. Using the best catalogues available at present, we investigate how many AGN with significantly large optical-radio positional offsets exist as well as the possible causes of these offsets. Methods. We performed a case study by finding optical counterparts to the International Celestial Reference Frame (ICRF2) radio sources in the Sloan Digital Sky Survey (SDSS) Data Release 9 (DR9). The ICRF2 catalogue was used as a reference because the radio positions determined by Very Long Baseline Interferometry (VLBI) observations are about two orders of magnitude more accurate than the optical positions. Results. We find 1297 objects in common for ICRF2 and SDSS DR9. Statistical analysis of the optical-radio differences verifies that the SDSS DR9 positions are accurate to ~55 mas in both coordinates, with no systematic offset with respect to ICRF2. We find 51 sources (~4% of the sample) for which the positional offset exceeds 170 mas (~3{sigma}). Astrophysical explanations must exist for most of these outliers. There are 3 known strong gravitational lenses among them. Dual AGN or recoiling supermassive black holes may also be possible. Conclusions. The most accurate Gaia-VLBI reference frame link will require a careful selection of a common set of objects by eliminating the outliers. On the other hand, the significant optical-radio positional non-coincidences may offer a new tool for finding e.g. gravitational lenses or dual AGN candidates. Detailed follow-up radio interferometric and optical spectroscopic observations are encouraged to investigate the outlier sources found in this study.
We present ongoing work on the spectral energy distributions (SEDs) of active galactic nuclei (AGNs), derived from X-ray, ultraviolet, optical, infrared and radio photometry and spectroscopy. Our work is motivated by new wide-field imaging surveys that will identify vast numbers of AGNs, and by the need to benchmark AGN SED fitting codes. We have constructed 41 SEDs of individual AGNs and 80 additional SEDs that mimic Seyfert spectra. All of our SEDs span 0.09 to 30 microns, while some extend into the X-ray and/or radio. We have tested the utility of the SEDs by using them to generate AGN photometric redshifts, and they outperform SEDs from the prior literature, including reduced redshift errors and flux density residuals.
We present spectral energy distributions (SEDs) of 41 active galactic nuclei, derived from multiwavelength photometry and archival spectroscopy. All of the SEDs span at least 0.09 to 30 micron, but in some instances wavelength coverage extends into the X-ray, far-infrared and radio. For some AGNs we have fitted the measured far-infrared photometry with greybody models, while radio flux density measurements have been approximated by power-laws or polynomials. We have been able to fill some of the gaps in the spectral coverage using interpolation or extrapolation of simple models. In addition to the 41 individual AGN SEDs, we have produced 72 Seyfert SEDs by mixing SEDs of the central regions of Seyferts with galaxy SEDs. Relative to the literature, our templates have broader wavelength coverage and/or higher spectral resolution. We have tested the utility of our SEDs by using them to generate photometric redshifts for 0 < z < 6.12 AGNs in the Bootes field (selected with X-ray, IR and optical criteria) and, relative to SEDs from the literature, they produce comparable or better photometric redshifts with reduced flux density residuals.
We present the observed-frame optical, near- and mid-infrared properties of X-ray selected AGN in the Lockman Hole. Using a likelihood ratio method on optical, near-infrared or mid-infrared catalogues, we assigned counterparts to 401 out of the 409 X-ray sources of the XMM-Newton catalogue. Accurate photometry was collected for all the sources from U to 24um. We used X-ray and optical criteria to remove any normal galaxies, galactic stars, or X-ray clusters among them and studied the multi-wavelength properties of the remaining 377 AGN. We used a mid-IR colour-colour selection to understand the AGN contribution to the optical and infrared emission. Using this selection, we identified different behaviours of AGN-dominated and host-dominated sources in X-ray-optical-infrared colour-colour diagrams. More specifically, the AGN dominated sources show a clear trend in the f_x/f_R vs. R-K and f_24um/f_R vs. R-K diagrams, while the hosts follow the behaviour of non X-ray detected galaxies. In the optical-near-infrared colour-magnitude diagram we see that the known trend of redder objects being more obscured in X-rays is stronger for AGN-dominated than for host-dominated systems. This is an indication that the trend is more related to the AGN contaminating the overall colours than any evolutionary effects. Finally, we find that a significant fraction (~30%) of the reddest AGN are not obscured in X-rays.