Do you want to publish a course? Click here

Magnetic circular dichroism in GaMnAs: (no) evidence for an impurity band

254   0   0.0 ( 0 )
 Added by Jaroslav Fabian
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magneto-optical properties of the ferromagnetic semiconductor GaMnAs are studied in a material specific multi-band tight-binding approach. Two realistic models are compared: one has no impurity band while the other shows an impurity band for low Mn concentrations. The calculated magnetic circular dichroism (MCD) is positive for both models proving that, unlike previously asserted, the observed positive MCD signal is inconclusive as to the presence or absence of an impurity band in GaMnAs. The positive MCD is due to the antiferromagnetic p-d coupling and the transitions into the conduction band.



rate research

Read More

The magnetic circular dichroism of III-V diluted magnetic semiconductors, calculated within a theoretical framework suitable for highly disordered materials, is shown to be dominated by optical transitions between the bulk bands and an impurity band formed from magnetic dopant states. The theoretical framework incorporates real-space Greens functions to properly incorporate spatial correlations in the disordered conduction band and valence band electronic structure, and includes extended and localized electronic states on an equal basis. Our findings reconcile unusual trends in the experimental magnetic circular dichroism in III-V DMSs with the antiferromagnetic p-d exchange interaction between a magnetic dopant spin and its host.
We report the observation of negative magnetoresistance in the ferromagnetic semiconductor GaMnAs at low temperatures ($T<3$ K) and low magnetic fields ($0< B <20$ mT). We attribute this effect to weak localization. Observation of weak localization provides a strong evidence of impurity band transport in these materials, since for valence band transport one expects either weak anti-localization due to strong spin-orbit interactions or total suppression of interference by intrinsic magnetization. In addition to the weak localization, we observe Altshuler-Aronov electron-electron interactions effect in this material.
We present a unified interpretation of experimentally observed magnetic circular dichroism (MCD) in the ferromagnetic semiconductor (Ga,Mn)As, based on theoretical arguments, which demonstrates that MCD in this material arises primarily from a difference in the density of spin-up and spin-down states in the valence band brought about by the presence of the Mn impurity band, rather than being primarily due to the Zeeman splitting of electronic states.
The difference in the transmission for left and right circularly polarised light though thin films on substrates in a magnetic field is used to obtain the magnetic circular dichroism of the film. However there are reflections at all the interfaces and these are also different for the two polarisations and generate the polar Kerr signal. In this paper the contribution to the differences to the total transmission from the transmission across interfaces as well as the differences in absorption in the film and the substrate are calculated. This gives a guide to when it is necessary to evaluate these corrections in order to obtain the real MCD from a measure of the differential transmission due to differential absorption in the film.
X-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra at the L$_{2,3}$ edges of Mn in (Ge,Mn) compounds have been measured and are compared to the results of first principles calculation. Early textit{ab initio} studies show that the Density Functional Theory (DFT) can very well describe the valence band electronic properties but fails to reproduce a characteristic change of sign in the L$_{3}$ XMCD spectrum of Mn in Ge$_3$Mn$_5$, which is observed in experiments. In this work we demonstrate that this disagreement is partially related to an underestimation of the exchange splitting of Mn 2$p$ core states within the local density approximation. It is shown that the change in sign experimentally observed is reproduced if the exchange splitting is accurately calculated within the Hartree-Fock approximation, while the final states can be still described by the DFT. This approach is further used to calculate the XMCD in different (Ge,Mn) compounds. It demonstrates that the agreement between experimental and theoretical spectra can be improved by combining state of the art calculations for the core and valence states respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا