The multiconfiguration Dirac-Hartree-Fock theory (MCDHF) has been employed to calculate the electric dipole moment of the 7s6d 3D2 state of radium induced by the nuclear Schiff moment. The results are dominated by valence and core-valence electron correlation effects. We show that the correlation effects can be evaluated in a converged series of multiconfiguration expansions.
We investigate the merits of a measurement of the permanent electric dipole moment of the electron ($e$EDM) with barium monofluoride molecules, thereby searching for phenomena of CP violation beyond those incorporated in the Standard Model of particle physics. Although the BaF molecule has a smaller enhancement factor in terms of the effective electric field than other molecules used in current studies (YbF, ThO and ThF$^+$), we show that a competitive measurement is possible by combining Stark-deceleration, laser-cooling and an intense primary cold source of BaF molecules. With the long coherent interaction times obtainable in a cold beam of BaF, a sensitivity of $5times10^{-30}$ e$cdot$cm for an $e$EDM is feasible. We describe the rationale, the challenges and the experimental methods envisioned to achieve this target.
We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 $mu$K. This is a key step towards a measurement of the electrons electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically-assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.
We report on a new measurement of the CP-violating permanent Electric Dipole Moment (EDM) of the neutral $^{129}$Xe atom. Our experimental approach is based on the detection of the free precession of co-located nuclear spin-polarized $^3$He and $^{129}$Xe samples. The EDM measurement sensitivity benefits strongly from long spin coherence times of several hours achieved in diluted gases and homogeneous weak magnetic fields of about 400~nT. A finite EDM is indicated by a change in the precession frequency, as an electric field is periodically reversed with respect to the magnetic guiding field. Our result, $left(-4.7pm6.4right)cdot 10^{-28}$ ecm, is consistent with zero and is used to place a new upper limit on the $^{129}$Xe EDM: $|d_text{Xe}|<1.5 cdot 10^{-27}$ ecm (95% C.L.). We also discuss the implications of this result for various CP-violating observables as they relate to theories of physics beyond the standard model.
Nuclear electric dipole moments of $^{3}He$ and $^{3}H$ are calculated using Time Reversal Invariance Violating (TRIV) potentials based on the meson exchange theory, as well as the ones derived by using pionless and pionful effective field theories, with nuclear wave functions obtained by solving Faddeev equations in configuration space for the complete Hamiltonians comprising both TRIV and realistic strong interactions. The obtained results are compared with the previous calculations of $^{3}He$ EDM and with time reversal invariance violating effects in neutron-deuteron scattering.
We show that existing calculations of the interaction between nuclear Schiff moments and electrons in molecules use an inaccurate operator which gives rise to significant errors. By comparing the matrix elements of the accurate and imprecise Schiff moment operators, we calculated the correction factor as a function of the nuclear charge Z and presented corrected results for the T,P-violating interaction of the nuclear spin with the molecular axis in the TlF, RaO, PbO, TlCN, ThO, AcF molecules and in the ferroelectric solid PbTiO$_3$.
Jacek Bieron
,Gediminas Gaigalas
,Erikas Gaidamauskas
.
(2009)
.
"MCDHF calculations of the electric dipole moment of radium induced by the nuclear Schiff moment"
.
Paul Indelicato
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا