Much excitement surrounds the possibility that strontium ruthenate exhibits chiral p-wave superconducting order. Such order would be a solid state analogue of the A phase of He-3, with the potential for exotic physics relevant to quantum computing. We take a critical look at the evidence for such time-reversal symmetry breaking order. The possible superconducting order parameter symmetries and the evidence for and against chiral p-wave order are reviewed, with an emphasis on the most recent theoretical predictions and experimental observations. In particular, attempts to reconcile experimental observations and theoretical predictions for the spontaneous supercurrents expected at sample edges and domain walls of a chiral p-wave superconductor and for the polar Kerr effect, a key signature of broken time-reversal symmetry, are discussed.