Do you want to publish a course? Click here

Lattice collapse and quenching of magnetism in CaFe2As2 under pressure: A single crystal neutron and x-ray diffraction investigation

215   0   0.0 ( 0 )
 Added by Andreas Kreyssig
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single crystal neutron and high-energy x-ray diffraction have identified the phase lines corresponding to transitions between the ambient-pressure tetragonal (T), the antiferromagnetic orthorhombic (O) and the non-magnetic collapsed tetragonal (cT) phases of CaFe2As2. We find no evidence of additional structures for pressures up to 2.5 GPa (at 300 K). Both the T-cT and O-cT transitions exhibit significant hysteresis effects and we demonstrate that coexistence of the O and cT phases can occur if a non-hydrostatic component of pressure is present. Measurements of the magnetic diffraction peaks show no change in the magnetic structure or ordered moment as a function of pressure in the O phase and we find no evidence of magnetic ordering in the cT phase. Band structure calculations show that the transition results in a strong decrease of the iron 3d density of states at the Fermi energy, consistent with a loss of the magnetic moment.



rate research

Read More

Neutron diffraction measurements of a high quality single crystal of CaFe2As2 are reported. A sharp transition was observed between the high temperature tetragonal and low temperature orthorhombic structures at TS = 172.5K (on cooling) and 173.5K (on warming). Coincident with the structural transition we observe a rapid, but continuous, ordering of the Fe moments, in a commensurate antiferromagnetic structure is observed, with a saturated moment of 0.80(5)muB/Fe directed along the orthorhombic a-axis. The hysteresis of the structural transition is 1K between cooling and warming and is consistent with previous thermodynamic, transport and single crystal x-ray studies. The temperature onset of magnetic ordering shifts rigidly with the structural transition providing the clearest evidence to date of the coupling between the structural and magnetic transitions in this material and the broader class of iron arsenides.
Neutron and x-ray diffraction measurements are presented for powders and single crystals of CaCo{1.86}As2. The crystal structure is a collapsed-tetragonal ThCr2Si2-type structure as previously reported, but with 7(1)% vacancies on the Co sites corresponding to the composition CaCo{1.86(2)}As2. The thermal expansion coefficients for both the a- and c-axes are positive from 10 to 300 K. Neutron diffraction measurements on single crystals demonstrate the onset of A-type collinear antiferromagnetic order below the Neel temperature TN = 52(1) K with the ordered moments directed along the tetragonal c-axis, aligned ferromagnetically in the ab-plane and antiferromagnetically stacked along the c-axis.
314 - Y. Su , P. Link , A. Schneidewind 2008
Neutron diffraction experiments have been carried out on a Sn-flux grown BaFe2As2 single crystal, the parent compound of the A-122 family of FeAs-based high-Tc superconductors. A tetragonal to orthorhombic structural phase transition and a three dimensional long-range antiferromagnetic ordering of the iron moment, with a unique magnetic propagation wavevector k = (1, 0, 1), have been found to take place at ~90 K. The magnetic moments of iron are aligned along the long a axis in the low temperature orthorhombic phase (Fmmm with b<a<c). Our results thus demonstrate that the magnetic structure of BaFe2As2 single crystal is the same as those in other A-122 iron pnictides compounds. We argue that the tin incorporation in the lattice is responsible for a smaller orthorhombic splitting and lower Neel temperature T_N observed in the experiment.
At ambient pressure CaFe2As2 has been found to undergo a first order phase transition from a high temperature, tetragonal phase to a low temperature orthorhombic / antiferromagnetic phase upon cooling through T ~ 170 K. With the application of pressure this phase transition is rapidly suppressed and by ~ 0.35 GPa it is replaced by a first order phase transition to a low temperature collapsed tetragonal, non-magnetic phase. Further application of pressure leads to an increase of the tetragonal to collapsed tetragonal phase transition temperature, with it crossing room temperature by ~ 1.7 GPa. Given the exceptionally large and anisotropic change in unit cell dimensions associated with the collapsed tetragonal phase, the state of the pressure medium (liquid or solid) at the transition temperature has profound effects on the low temperature state of the sample. For He-gas cells the pressure is as close to hydrostatic as possible and the transitions are sharp and the sample appears to be single phase at low temperatures. For liquid media cells at temperatures below media freezing, the CaFe2As2 transforms when it is encased by a frozen media and enters into a low temperature multi-crystallographic-phase state, leading to what appears to be a strain stabilized superconducting state at low temperatures.
The effects of pressure generated in a liquid medium, clamp, pressure cell on the in-plane and c-axis resistance, temperature-dependent Hall coefficient and low temperature, magnetoresistance in CaFe2As2 are presented. The T - P phase diagram, including the observation of a complete superconducting transition in resistivity, delineated in earlier studies is found to be highly reproducible. The Hall resistivity and low temperature magnetoresistance are sensitive to different states/phases observed in CaFe2As2. Auxiliary measurements under uniaxial, c-axis, pressure are in general agreement with the liquid medium clamp cell results with some difference in critical pressure values and pressure derivatives. The data may be viewed as supporting the potential importance of non-hydrostatic components of pressure in inducing superconductivity in CaFe2As2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا