On the nonlocality of the fractional Schr{o}dinger equation


Abstract in English

A number of papers over the past eight years have claimed to solve the fractional Schr{o}dinger equation for systems ranging from the one-dimensional infinite square well to the Coulomb potential to one-dimensional scattering with a rectangular barrier. However, some of the claimed solutions ignore the fact that the fractional diffusion operator is inherently nonlocal, preventing the fractional Schr{o}dinger equation from being solved in the usual piecewise fashion. We focus on the one-dimensional infinite square well and show that the purported groundstate, which is based on a piecewise approach, is definitely not a solution of the fractional Schr{o}dinger equation for general fractional parameters $alpha$. On a more positive note, we present a solution to the fractional Schr{o}dinger equation for the one-dimensional harmonic oscillator with $alpha=1$.

Download