No Arabic abstract
We consider the free boundary condition Gibbs measure of the Potts model on a random tree. We provide an explicit temperature interval below the ferromagnetic transition temperature for which this measure is extremal, improving older bounds of Mossel and Peres. In information theoretic language extremality of the Gibbs measure corresponds to non-reconstructability for symmetric q-ary channels. The bounds are optimal for the Ising model and appear to be close to what we conjecture to be the true values up to a factor of 0.0150 in the case q = 3 and 0.0365 for q = 4. Our proof uses an iteration of random boundary entropies from the outside of the tree to the inside, along with a symmetrization argument.
We study the totally asymmetric simple exclusion process (TASEP) on trees where particles are generated at the root. Particles can only jump away from the root, and they jump from $x$ to $y$ at rate $r_{x,y}$ provided $y$ is empty. Starting from the all empty initial condition, we show that the distribution of the configuration at time $t$ converges to an equilibrium. We study the current and give conditions on the transition rates such that the current is of linear order or such that there is zero current, i.e. the particles block each other. A key step, which is of independent interest, is to bound the first generation at which the particle trajectories of the first $n$ particles decouple.
We give a criterion of the form Q(d)c(M)<1 for the non-reconstructability of tree-indexed q-state Markov chains obtained by broadcasting a signal from the root with a given transition matrix M. Here c(M) is an explicit function, which is convex over the set of Ms with a given invariant distribution, that is defined in terms of a (q-1)-dimensional variational problem over symmetric entropies. Further Q(d) is the expected number of offspring on the Galton-Watson tree. This result is equivalent to proving the extremality of the free boundary condition-Gibbs measure within the corresponding Gibbs-simplex. Our theorem holds for possibly non-reversible M and its proof is based on a general Recursion Formula for expectations of a symmetrized relative entropy function, which invites their use as a Lyapunov function. In the case of the Potts model, the present theorem reproduces earlier results of the authors, with a simplified proof, in the case of the symmetric Ising model (where the argument becomes similar to the approach of Pemantle and Peres) the method produces the correct reconstruction threshold), in the case of the (strongly) asymmetric Ising model where the Kesten-Stigum bound is known to be not sharp the method provides improved numerical bounds.
The Maki-Thompson rumor model is defined by assuming that a population represented by a graph is subdivided into three classes of individuals; namely, ignorants, spreaders and stiflers. A spreader tells the rumor to any of its nearest ignorant neighbors at rate one. At the same rate, a spreader becomes a stifler after a contact with other nearest neighbor spreaders, or stiflers. In this work we study the model on random trees. As usual we define a critical parameter of the model as the critical value around which the rumor either becomes extinct almost-surely or survives with positive probability. We analyze the existence of phase-transition regarding the survival of the rumor, and we obtain estimates for the mean range of the rumor. The applicability of our results is illustrated with examples on random trees generated from some well-known discrete distributions.
In this paper we find a realization for the DB-boundary conditions, which imposes vanishing normal derivatives of the normal components of the D and B fields. The implementation of the DB boundary, requiring vanishing normal components of D and B, is known. It is shown that the realization of the DB boundary can be based on a layer of suitable metamaterial, called the wave-guiding quarter-wave transformer, which transforms the DB boundary to the DB boundary. In an appendix, the mixed-impedance boundary, which is a generalization of both DB and DB boundaries, is shown to transform to another mixed-impedance boundary through the same transformer.
In the randomly-oriented Manhattan lattice, every line in $mathbb{Z}^d$ is assigned a uniform random direction. We consider the directed graph whose vertex set is $mathbb{Z}^d$ and whose edges connect nearest neighbours, but only in the direction fixed by the line orientations. Random walk on this directed graph chooses uniformly from the $d$ legal neighbours at each step. We prove that this walk is superdiffusive in two and three dimensions. The model is diffusive in four and more dimensions.