Let $Gamma$ be a finite-index subgroup of the mapping class group of a closed genus $g$ surface that contains the Torelli group. For instance, $Gamma$ can be the level $L$ subgroup or the spin mapping class group. We show that $H_2(Gamma;Q) cong Q$ for $g geq 5$. A corollary of this is that the rational Picard groups of the associated finite covers of the moduli space of curves are equal to $Q$. We also prove analogous results for surface with punctures and boundary components.