Finite-dimensional attractors for the quasi-linear strongly-damped wave equation


Abstract in English

We present a new method of investigating the so-called quasi-linear strongly damped wave equations $$ partial_t^2u-gammapartial_tDelta_x u-Delta_x u+f(u)= abla_xcdot phi( abla_x u)+g $$ in bounded 3D domains. This method allows us to establish the existence and uniqueness of energy solutions in the case where the growth exponent of the non-linearity $phi$ is less than 6 and $f$ may have arbitrary polynomial growth rate. Moreover, the existence of a finite-dimensional global and exponential attractors for the solution semigroup associated with that equation and their additional regularity are also established. In a particular case $phiequiv0$ which corresponds to the so-called semi-linear strongly damped wave equation, our result allows to remove the long-standing growth restriction $|f(u)|leq C(1+ |u|^5)$.

Download