No Arabic abstract
Understanding the heating of electrons to quasi-thermal energies at collisionless shocks has broad implications for plasma astrophysics. It directly impacts the interpretation of X-ray spectra from shocks, is important for understanding how energy is partitioned between the thermal and cosmic ray populations, and provides insight into the structure of the shock itself. In Ghavamian, Laming & Rakowski (2007) we presented observational evidence for an inverse square relation between the electron-to-proton temperature ratio and the shock speed at the outer blast waves of supernova remnants in partially neutral interstellar gas. There we outlined how lower hybrid waves generated in the cosmic ray precursor could produce such a relationship by heating the electrons to a common temperature independent of both shock speed and the strength of the ambient magnetic field. Here we explore the mechanism of lower hybrid wave heating of electrons in more detail. Specifically we examine the growth rate of the lower hybrid waves for both the kinetic (resonant) and reactive cases. We find that only the kinetic case exhibits a growing mode. At low Alfven Mach numbers (~15) the growth of lower hybrid waves can be faster than the magnetic field amplification by modified Alfven waves.
In this review we discuss some observational aspects and theoretical models of astrophysical collisionless shocks in partly ionized plasma with the presence of non-thermal components. A specific feature of fast strong collisionless shocks is their ability to accelerate energetic particles that can modify the shock upstream flow and form the shock precursors. We discuss the effects of energetic particle acceleration and associated magnetic field amplification and decay in the extended shock precursors on the line and continuum multi-wavelength emission spectra of the shocks. Both Balmer-type and radiative astrophysical shocks are discussed in connection to supernova remnants interacting with partially neutral clouds. Quantitative models described in the review predict a number of observable line-like emission features that can be used to reveal the physical state of the matter in the shock precursors and the character of nonthermal processes in the shocks. Implications of recent progress of gamma-ray observations of supernova remnants in molecular clouds are highlighted.
We present a particle-in-cell simulation of the generation of a collisionless turbulent shock in a dense plasma driven by an ultra-high-intensity laser pulse. From the linear analysis, we highlight the crucial role of the laser-heated and return-current electrons in triggering a strong Weibel-like instability, giving rise to a magnetic turbulence able to isotropize the target ions.
Most of the plasma microphysics which shapes the acceleration process of particles at collisionless shock waves takes place in the cosmic-ray precursor, through the interaction of accelerated particles with the unshocked plasma. Detecting directly or indirectly the synchrotron radiation of accelerated particles in this precursor would open a new window on the microphysics of acceleration and of collisionless shock waves. We provide analytical estimates of the spectrum and of the polarization fraction of the synchrotron precursor for both relativistic and non-relativistic collisionless shock fronts, accounting for the self-generation or amplification of magnetic turbulence. In relativistic sources, the spectrum of the precursor is harder than that of the shocked plasma, because the upstream residence time increases with particle energy, leading to an effectively hard spectrum of accelerated particles in the precursor volume. At high frequencies, typically in the optical to X-ray range, the contribution of the precursor becomes sizeable, but we find that in most cases studied, it remains dominated by the synchrotron or inverse Compton contribution of the shocked plasma; its contribution might be detectable only in trans-relativistic shock waves. Non-relativistic sources offer the possibility of spectral imaging of the precursor by viewing the shock front edge-on. We calculate this spectro-morphological contribution for various parameters. The synchrotron contribution is also sizeable at the highest frequencies (X-ray range). If the turbulence is tangled in the plane transverse to the shock front, the resulting synchrotron radiation should be nearly maximally linearly polarized; polarimetry thus arises as an interesting tool to reveal this precursor.[Abridged]
Magnetic reconnection in strongly magnetized (low-beta), weakly collisional plasmas is investigated using a novel fluid-kinetic model [Zocco & Schekochihin, Phys. Plasmas 18, 102309 (2011)] which retains non-isothermal electron kinetics. It is shown that electron heating via Landau damping (linear phase mixing) is the dominant dissipation mechanism. In time, electron heating occurs after the peak of the reconnection rate; in space, it is concentrated along the separatrices of the magnetic island. For sufficiently large systems, the peak reconnection rate is $cE_{max}approx 0.2v_AB_{y,0}$, where $v_A$ is the Alfven speed based on the reconnecting field $B_{y,0}$. The island saturation width is the same as in MHD models except for small systems, when it becomes comparable to the kinetic scales.
In light of evidence for a high ionization rate due to Low-Energy Cosmic Rays (LECR), in diffuse molecular gas in the solar neighbourhood, we evaluate their heat input to the Warm Ionized Medium (WIM). LECR are much more effective at heating plasma than they are at heating neutrals. We show that the upper end of the measured ionization rates corresponds to a local LECR heating rate sufficient to maintain the WIM against radiative cooling, independent of the nature of the ionizing particles or the detailed shape of their spectrum. Elsewhere in the Galaxy the LECR heating rates may be higher than measured locally. In particular, higher fluxes of LECR have been suggested for the inner Galactic disk, based on the observed hard X-ray emission, with correspondingly larger heating rates implied for the WIM. We conclude that LECR play an important, perhaps dominant role in the thermal balance of the WIM.