Do you want to publish a course? Click here

Very High Energy gamma-ray observations of Mrk 501 using TACTIC imaging gamma-ray telescope during 2005-06

137   0   0.0 ( 0 )
 Added by Kuldeep Yadav
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we report on the Markarian 501 results obtained during our TeV $gamma$-ray observations from March 11 to May 12, 2005 and February 28 to May 7, 2006 for 112.5 hours with the TACTIC $gamma$-ray telescope. During 2005 observations for 45.7 hours, the source was found to be in a low state and we have placed an upper limit of 4.62 $times$ 10$^{-12}$ photons cm$^{-2}$ s$^{-1}$ at 3$sigma$ level on the integrated TeV $gamma$-ray flux above 1 TeV from the source direction. However, during the 2006 observations for 66.8h, detailed data analysis revealed the presence of a TeV $gamma$-ray signal from the source with a statistical significance of 7.5$sigma$ above $E_{gamma}geq$ 1 TeV. The time averaged differential energy spectrum of the source in the energy range 1-11 TeV is found to match well with the power law function of the form ($dPhi/dE=f_0 E^{-Gamma}$) with $f_0=(1.66pm0.52)times 10^{-11}cm^{-2}s^{-1}TeV^{-1}$ and $Gamma=2.80pm0.27$.



rate research

Read More

We study the capability of the MAGIC telescope to observe under moderate moonlight. TeV gamma-ray signals from the Crab nebula were detected with the MAGIC telescope during periods when the Moon was above the horizon and during twilight. This was accomplished by increasing the trigger discriminator thresholds. No change is necessary in the high voltage settings since the camera PMTs were especially designed to avoid high currents. We characterize the telescope performance by studying the effect of the moonlight on the gamma-ray detection efficiency and sensitivity, as well as on the energy threshold.
The CAT (Cherenkov Array at Themis) imaging telescope, equipped with a very-high-definition camera (546 fast phototubes with 0.12 degrees spacing surrounded by 54 larger tubes in two guard rings) started operation in Autumn 1996 on the site of the former solar plant Themis (France). Using the atmospheric Cherenkov technique, it detects and identifies very high energy gamma-rays in the range 250 GeV to a few tens of TeV. The instrument, which has detected three sources (Crab nebula, Mrk 421 and Mrk 501), is described in detail.
The H.E.S.S. Imaging Atmospheric Cherenkov Telescope Array is currently the most sensitive instrument for Very High Energy (VHE) gamma-ray observations in the energy range of about 0.1-10 TeV. During more than two years of operation with the complete 4-telescope array, many galactic and extragalactic VHE gamma-ray sources have been discovered. With its superior sensitivity and its large field-of-view camera, H.E.S.S. is particularly suited for surveys and detailed studies of extended sources. A selection of recent H.E.S.S. results is presented in this proceeding.
Gamma-ray burst (GRB) observations at very high energies (VHE, E > 100 GeV) can impose tight constraints on some GRB emission models. Many GRB afterglow models predict a VHE component similar to that seen in blazars and plerions, in which the GRB spectral energy distribution has a double-peaked shape extending into the VHE regime. VHE emission coincident with delayed X-ray flare emission has also been predicted. GRB follow-up observations have had high priority in the observing program at the Whipple 10m Gamma-ray Telescope and GRBs will continue to be high priority targets as the next generation observatory, VERITAS, comes on-line. Upper limits on the VHE emission, at late times (>~4 hours), from seven GRBs observed with the Whipple Telescope are reported here.
Gamma-ray bursts (GRBs) have been an enigma since their discovery forty years ago. However, considerable progress unraveling their mysteries has been made in recent years. Developments in observations, theory, and instrumentation have prepared the way so that the next decade can be the one in which we finally answer the question, What are gamma-ray bursts? This question encompasses not only what the progenitors are that produce the GRBs, but also how the enormous luminosity of the GRBs, concentrated in gamma rays, is achieved. Observations across the electromagnetic spectrum, from both the ground and space, will be required to fully tackle this important question. This white paper, mostly distilled from a recent study commissioned by the Division of Astrophysics of the American Physical Society, focuses on what very high energy (~100 GeV and above) gamma-ray observations can contribute. Very high energy gamma rays probe the most extreme high energy particle populations in the burst environment, testing models of lepton and proton acceleration in GRBs and constraining the bulk Lorentz factor and opacity of the outflow. Sensitivity improvements of more than an order of magnitude in the very high energy gamma-ray band can be achieved early in the next decade, in order to contribute to this science.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا