Do you want to publish a course? Click here

2MASS Galaxies in the Fornax Cluster Spectroscopic Survey

188   0   0.0 ( 0 )
 Added by Rhys Morris
 Publication date 2007
  fields Physics
and research's language is English
 Authors R.A.H. Morris




Ask ChatGPT about the research

The Fornax Cluster Spectroscopic Survey (FCSS) is an all-object survey of a region around the Fornax Cluster of galaxies undertaken using the 2dF multi-object spectrograph on the Anglo-Australian Telescope. Its aim was to obtain spectra for a complete sample of all objects with 16.5 < b_j < 19.7 irrespective of their morphology (i.e. including `stars, `galaxies and `merged images). We explore the extent to which (nearby) cluster galaxies are present in 2MASS. We consider the reasons for the omission of 2MASS galaxies from the FCSS and vice versa. We consider the intersection (2.9 square degrees on the sky) of our data set with the infra-red 2 Micron All-Sky Survey (2MASS), using both the 2MASS Extended Source Catalogue (XSC) and the Point Source Catalogue (PSC). We match all the XSC objects to FCSS counterparts by position and also extract a sample of galaxies, selected by their FCSS redshifts, from the PSC. We confirm that all 114 XSC objects in the overlap sample are galaxies, on the basis of their FCSS velocities. A total of 23 Fornax Cluster galaxies appear in the matched data, while, as expected, the remainder of the sample lie at redshifts out to z = 0.2 (the spectra show that 61% are early type galaxies, 18% are intermediate types and 21% are strongly star forming).The PSC sample turns out to contain twice as many galaxies as does the XSC. However, only one of these 225 galaxies is a (dwarf) cluster member. On the other hand, galaxies which are unresolved in the 2MASS data (though almost all are resolved in the optical) amount to 71% of the non-cluster galaxies with 2MASS detections and have redshifts out to z=0.32.



rate research

Read More

118 - Monica L. Turner 2012
The Advanced Camera for Surveys (ACS) Fornax Cluster Survey is a Hubble Space Telescope program to image 43 early-type galaxies in the Fornax cluster, using the F475W and F850LP bandpasses of the ACS. We employ both 1D and 2D techniques to characterize the properties of the stellar nuclei in these galaxies, defined as the central luminosity excesses relative to a Sersic model fitted to the underlying host. We find 72+/-13% of our sample (31 galaxies) to be nucleated, with only three of the nuclei offset by more than 0.5 from their galaxy photocenter, and with the majority of nuclei having colors bluer than their hosts. The nuclei are observed to be larger, and brighter, than typical Fornax globular clusters, and to follow different structural scaling relations. A comparison of our results to those from the ACS Virgo Cluster Survey reveals striking similarities in the properties of the nuclei belonging to these different environments. We briefly review a variety of proposed formation models and conclude that, for the low-mass galaxies in our sample, the most important mechanism for nucleus growth is probably infall of star clusters through dynamical friction, while for higher mass galaxies, gas accretion triggered by mergers, accretions and tidal torques is likely to dominate, with the relative importance of these two processes varying smoothly as a function of galaxy mass. Some intermediate-mass galaxies in our sample show a complexity in their inner structure that may be the signature of hybrid nuclei that arose through parallel formation channels.
114 - M. J. Drinkwater 1998
We describe a sample of thirteen bright (18.5<Bj<20.1) compact galaxies at low redshift (0.05<z<0.21) behind the Fornax Cluster. These galaxies are unresolved on UK Schmidt sky survey plates, so would be missing from most galaxy catalogs compiled from this material. The objects were found during initial observations of The Fornax Spectroscopic Survey. This project is using the Two-degree Field spectrograph on the Anglo-Australian Telescope to obtain spectra for a complete sample of all 14000 objects, stellar and non-stellar, with 16.5<Bj<19.7, in a 12 square degree area centered on the Fornax cluster of galaxies. The surface density of compact galaxies with magnitudes 16.5<Bj<19.7 is 7+/-3 /sq.deg., representing 2.8+/-1.6% of all local (z<0.2) galaxies to this limit. There are 12+/-3 /sq.deg. with 16.5<Bj<20.2. They are luminous (-21.5<Mb<-18.0, for H0=50 km/s/mpc) and most have strong emission lines (H alpha equivalent widths of 40-200 A) and small sizes typical of luminous HII galaxies and compact narrow emission line galaxies. Four out of thirteen have red colors and early-type spectra, so are unlikely to have been detected in any previous surveys.
Thanks to the 2dF spectrograph on the Anglo-Australian Telescope, we have recently completed the first stage of a complete spectroscopic survey more than one order of magnitude larger than any previous study, measuring 7000 spectra in a 6 sq.deg. area as part of our study of the Fornax Cluster. In this article we describe the public release of 3600 spectra from our first field. We hope that this public release will encourage colleagues making surveys for rare objects to choose these fields, as much of the follow-up spectroscopy that might be required is available from our data.
We present the results of a wide spectroscopic survey aimed at detecting extragalactic globular clusters (GCs) in the core of the Fornax cluster. About 4500 low resolution spectra (from 4800 to 10000 AA ) were observed in 25 VLT/VIMOS masks covering the central 1 deg$^{2}$ around the dominant galaxy NGC 1399 corresponding to $sim$175 kpc galactocentric radius. We describe the methodology used for data reduction and data analysis. We found a total of 387 unique physical objects (372 GCs and 15 ultra compact dwarfs) in the field covered by our observations. Most of these objects are associated with NGC 1399, with only 10% likely belonging to other giant galaxies. The new VIMOS dataset is complementary to the many GC catalogues already present in the literature and it brings the total number of tracer particles around NGC 1399 to more than 1130 objects. With this comprehensive radial velocity sample we have found that the velocity dispersion of the GC population (equally for red and blue GC populations) shows a relatively sharp increase from low velocity dispersion ($sim250$-$350$ kms$^{-1}$) to high velocity dispersion ($sim300$-$400$ kms$^{-1}$) at projected radius of $approx10$ arcmin ($sim60$ kpc) from the galaxy centre. This suggests that at a projected radius of $approx60$ kpc both blue and red GC populations begin to be governed by the dominating Fornax cluster potential, rather than by the central NGC 1399 galaxy potential. This kinematic evidence corroborates similar results found using surface brightness analysis and planetary nebulae kinematics.
Using the photometric data from the Next Generation Fornax Survey, we find a significant radial alignment signal among the Fornax dwarf galaxies. For the first time, we report that the radial alignment signal of nucleated dwarfs is stronger than that of non-nucleated ones at 2.4$sigma$ confidence level, and the dwarfs located in the outer region ($R>R_{rm{vir}}/3$; $R_{rm{vir}}$ is the Fornax virial radius) show slightly stronger radial alignment signal than those in the inner region ($R<R_{rm{vir}}/3$) at $1.5sigma$ level. We also find that the significance of radial alignment signal is independent of the luminosities or sizes of the dwarfs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا