Do you want to publish a course? Click here

Discretely Holomorphic Parafermions in Lattice Z(N) Models

193   0   0.0 ( 0 )
 Added by John Cardy
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct lattice parafermions - local products of order and disorder operators - in nearest-neighbor Z(N) models on regular isotropic planar lattices, and show that they are discretely holomorphic, that is they satisfy discrete Cauchy-Riemann equations, precisely at the critical Fateev-Zamolodchikov (FZ) integrable points. We generalize our analysis to models with anisotropic interactions, showing that, as long as the lattice is correctly embedded in the plane, such discretely holomorphic parafermions exist for particular values of the couplings which we identify as the anisotropic FZ points. These results extend to more general inhomogeneous lattice models as long as the covering lattice admits a rhombic embedding in the plane.



rate research

Read More

397 - Yacine Ikhlef , John Cardy 2009
We define parafermionic observables in various lattice loop models, including examples where no Kramers-Wannier duality holds. For a particular rhombic embedding of the lattice in the plane and a value of the parafermionic spin these variables are discretely holomorphic (they satisfy a lattice version of the Cauchy-Riemann equations) as long as the Boltzmann weights satisfy certain linear constraints. In the cases considered, the weights then also satisfy the critical Yang-Baxter equations, with the spectral parameter being related linearly to the angle of the elementary rhombus.
159 - Yacine Ikhlef 2012
In two-dimensional statistical models possessing a discretely holomorphic parafermion, we introduce a modified discrete Cauchy-Riemann equation on the boundary of the domain, and we show that the solution of this equation yields integrable boundary Boltzmann weights. This approach is applied to (i) the square-lattice O(n) loop model, where the exact locations of the special and ordinary transitions are recovered, and (ii) the Fateev-Zamolodchikov $Z_N$ spin model, where a new rotation-invariant, integrable boundary condition is discovered for generic $N$.
We review some recent developments in the study of Gibbs and non-Gibbs properties of transformed n-vector lattice and mean-field models under various transformations. Also, some new results for the loss and recovery of the Gibbs property of planar rotor models during stochastic time evolution are presented.
We construct for the first time examples of non-frustrated, two-body, infinite-range, one-dimensional classical lattice-gas models without periodic ground-state configurations. Ground-state configurations of our models are Sturmian sequences defined by irrational rotations on the circle. We present minimal sets of forbidden patterns which define Sturmian sequences in a unique way. Our interactions assign positive energies to forbidden patterns and are equal to zero otherwise. We illustrate our construction by the well-known example of the Fibonacci sequences.
We consider the $varphi_{1,3}$ off-critical perturbation ${cal M}(m,m;t)$ of the general non-unitary minimal models where $2le mle m$ and $m, m$ are coprime and $t$ measures the departure from criticality corresponding to the $varphi_{1,3}$ integrable perturbation. We view these models as the continuum scaling limit in the ferromagnetic Regime III of the Forrester-Baxter Restricted Solid-On-Solid (RSOS) models on the square lattice. We also consider the RSOS models in the antiferromagnetic Regime II related in the continuum scaling limit to $mathbb{Z}_n$ parfermions with $n=m-2$. Using an elliptic Yang-Baxter algebra of planar tiles encoding the allowed face configurations, we obtain the Hamiltonians of the associated quantum chains defined as the logarithmic derivative of the transfer matrices with periodic boundary conditions. The transfer matrices and Hamiltonians act on a vector space of paths on the $A_{m-1}$ Dynkin diagram whose dimension is counted by generalized Fibonacci numbers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا