No Arabic abstract
The self-organized growth of Co nanoparticles with 10 nm periodicity was achieved at room temperature on a Ag(001) surface patterned by an underlying dislocation network, as shown by real time, in situ Grazing Incidence Small and Wide Angle X-ray Scattering. The misfit dislocation network, buried at the interface between a 5nm-thick Ag thin film and a MgO(001) substrate, induces a periodic strain field on top of the surface. Nucleation and growth of Co on tensile areas are found as the most favorable sites as highlighted by Molecular Dynamic simulations.
A growth model and parameters obtained in our previous experimental (scanning tunneling microscopy, KMC) and theoretical (kinetic Monte Carlo simulations, KMC) studies of Ag/Si(111)-(7x7) heteroepitaxy were used to optimise growth conditions (temperature and deposition rate) for the most ordered self-organized growth of Ag island arrays on the (7x7) reconstructed surface. The conditions were estimated by means of KMC simulations using the preference in occupation of half unit cells (HUCs) of F-type as a criterion of island ordering. Morphology of experimentally prepared island structures was studied by STM. High degree of experimentally obtained island ordering is compared with the simulated data and results are discussed with respect to the model and parameters used at the KMC simulations.
In metal organic vapor phase epitaxy of GaN, the growth mode is sensitive to reactor temperature. In this study, V-pit-shaped GaN has been grown on normal c-plane cone-patterned sapphire substrate by decreasing the growth temperature of high-temperature-GaN to around 950 oC, which leads to the 3-dimensional growth of GaN. The so-called WM well describes the shape that the bottom of GaN V-pit is just right over the top of sapphire cone, and the regular arrangement of V-pits follows the patterns of sapphire substrate strictly. Two types of semipolar facets (1101) and (1122) expose on sidewalls of V-pits. Furthermore, by raising the growth temperature to 1000 oC, the growth mode of GaN can be transferred to 2-demonsional growth. Accordingly, the size of V-pits becomes smaller and the area of c-plane GaN becomes larger, while the total thickness of GaN keeps almost unchanged during this process. As long as the 2-demonsional growth lasts, the V-pits will disappear and only flat c-plane GaN remains. This means the area ratio of c-plane and semipolar plane GaN can be controlled by the duration time of 2-demonsional growth.
We present a combined study by Scanning Tunneling Microscopy and atomistic simulations of the emission of dissociated dislocation loops by nanoindentation on a (001) fcc surface. The latter consist of two stacking-fault ribbons bounded by Shockley partials and a stair-rod dislocation. These dissociated loops, which intersect the surface, are shown to originate from loops of interstitial character emitted along the <110> directions and are usually located at hundreds of angstroms away from the indentation point. Simulations reproduce the nucleation and glide of these dislocation loops.
Here we provide a detailed analysis, along with some extensions and additonal investigations, of a recently proposed self-organised model for the evolution of complex networks. Vertices of the network are characterised by a fitness variable evolving through an extremal dynamics process, as in the Bak-Sneppen model representing a prototype of Self-Organized Criticality. The network topology is in turn shaped by the fitness variable itself, as in the fitness network model. The system self-organizes to a nontrivial state, characterized by a power-law decay of dynamical and topological quantities above a critical threshold. The interplay between topology and dynamics in the system is the key ingredient leading to an unexpected behaviour of these quantities.
Site-controlled quantum dots formed during the deposition of (Al)GaAs layers by metalorganic vapor-phase epitaxy on GaAs(111)B substrates patterned with inverted pyramids result in geometric and compositional self-ordering along the vertical axis of the template. We describe a theoretical scheme that reproduces the experimentally-observed time-dependent behavior of this process, including the evolution of the recess and the increase of Ga incorporation along the base of the template to stationary values determined by alloy composition and other growth parameters. Our work clarifies the interplay between kinetics and geometry for the development of self-ordered nanostructures on patterned surfaces, which is essential for the reliable on-demand design of confined systems for applications to quantum optics.