No Arabic abstract
We introduce a new, highly sensitive, and simple heterodyne optical method for imaging individual nonfluorescent nanoclusters and nanocrystals. A 2 order of magnitude improvement of the signal is achieved compared to previous methods. This allows for the unprecedented detection of individual small absorptive objects such as metallic clusters (of 67 atoms) or nonluminescent semiconductor nanocrystals. The measured signals are in agreement with a calculation based on the scattering field theory from a photothermal-induced modulated index of refraction profile around the nanoparticle.
Photothermal heterodyne detection is used to record the first room-temperature absorption spectra of single CdSe/ZnS semiconductor nanocrystals. These spectra are recorded in the high cw excitation regime, and the observed bands are assigned to transitions involving biexciton and trion states. Comparison with the single nanocrystals photoluminescence spectra leads to the measurement of spectral Stokes shifts free from ensemble averaging.
We introduce a new, highly sensitive, and simple heterodyne optical method for imaging individual non-fluorescent nano-objects. A two orders of magnitude improvement of the signal is achieved compared to previous methods. This allows for the unprecedented detection of individual small absorptive objects such as metallic clusters (of 67 atoms) or non-luminescent semiconductor nanocrystals. The measured signals are in agreement with a calculation based on the scattering field theory from a photothermal-induced modulated index of refraction profile around the nanoparticle.
Several fields of applications require a reliable characterization of the photothermal response and heat dissipation of nanoscopic systems, which remains a challenging task both for modeling and experimental measurements. Here, we present a new implementation of anti-Stokes thermometry that enables the in situ photothermal characterization of individual nanoparticles (NPs) from a single hyperspectral photoluminescence confocal image. The method is label-free, applicable to any NP with detectable anti-Stokes emission, and does not require any prior information about the NP itself or the surrounding media. With it, we first studied the photothermal response of spherical gold NPs of different sizes on glass substrates, immersed in water, and found that heat dissipation is mainly dominated by the water for NPs larger than 50 nm. Then, the role of the substrate was studied by comparing the photothermal response of 80 nm gold NPs on glass with sapphire and graphene, two materials with high thermal conductivity. For a given irradiance level, the NPs reach temperatures 18% lower on sapphire and 24% higher on graphene than on bare glass. The fact that the presence of a highly conductive material such as graphene leads to a poorer thermal dissipation demonstrates that interfacial thermal resistances play a very significant role in nanoscopic systems, and emphasize the need for in situ experimental thermometry techniques. The developed method will allow addressing several open questions about the role of temperature in plasmon-assisted applications, especially ones where NPs of arbitrary shapes are present in complex matrixes and environments.
Single-nanotube photometry was used to measure the product of absorption cross-section and fluorescence quantum yield for 12 (n,m) structural species of semiconducting SWNTs in aqueous SDBS suspension. These products ranged from 1.7 to 4.5 x 10(-19) cm2/C atom, generally increasing with optical band gap as described by the energy gap law. The findings suggest fluorescent quantum yields of ~8% for the brightest, (10,2) species and introduce the empirical calibration factors needed to deduce quantitative (n,m) distributions from bulk fluorimetric intensities.
The Photothermal Heterodyne Imaging method is used to study for the first time the absorption spectra of individual gold nanoparticles with diameters down to 5 nm. Intrinsic size effects wich result in a broadening of the Surface Plasmon resonance are unambiguously observed. Dispersions in the peak energies and homogeneous widths of the single particle resonances are revealed. The experimental results are analysed within the frame of Mie theory.