Do you want to publish a course? Click here

Reconstructing a Random Potential from its Random Walks

216   0   0.0 ( 0 )
 Added by Remi Monasson
 Publication date 2007
  fields Physics
and research's language is English
 Authors Simona Cocco




Ask ChatGPT about the research

The problem of how many trajectories of a random walker in a potential are needed to reconstruct the values of this potential is studied. We show that this problem can be solved by calculating the probability of survival of an abstract random walker in a partially absorbing potential. The approach is illustrated on the discrete Sinai (random force) model with a drift. We determine the parameter (temperature, duration of each trajectory, ...) values making reconstruction as fast as possible.



rate research

Read More

With the purpose of explaining recent experimental findings, we study the distribution $A(lambda)$ of distances $lambda$ traversed by a block that slides on an inclined plane and stops due to friction. A simple model in which the friction coefficient $mu$ is a random function of position is considered. The problem of finding $A(lambda)$ is equivalent to a First-Passage-Time problem for a one-dimensional random walk with nonzero drift, whose exact solution is well-known. From the exact solution of this problem we conclude that: a) for inclination angles $theta$ less than $theta_c=tan(av{mu})$ the average traversed distance $av{lambda}$ is finite, and diverges when $theta to theta_c^{-}$ as $av{lambda} sim (theta_c-theta)^{-1}$; b) at the critical angle a power-law distribution of slidings is obtained: $A(lambda) sim lambda^{-3/2}$. Our analytical results are confirmed by numerical simulation, and are in partial agreement with the reported experimental results. We discuss the possible reasons for the remaining discrepancies.
We introduce a heterogeneous continuous time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatio-temporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
We study how the Hurst exponent $alpha$ depends on the fraction $f$ of the total time $t$ remembered by non-Markovian random walkers that recall only the distant past. We find that otherwise nonpersistent random walkers switch to persistent behavior when inflicted with significant memory loss. Such memory losses induce the probability density function of the walkers position to undergo a transition from Gaussian to non-Gaussian. We interpret these findings of persistence in terms of a breakdown of self-regulation mechanisms and discuss their possible relevance to some of the burdensome behavioral and psychological symptoms of Alzheimers disease and other dementias.
Bernoulli random walks, a simple avalanche model, and a special branching process are essesntially identical. The identity gives alternative insights into the properties of these basic model sytems.
263 - Gleb Oshanin 2009
We study the kinetics for the search of an immobile target by randomly moving searchers that detect it only upon encounter. The searchers perform intermittent random walks on a one-dimensional lattice. Each searcher can step on a nearest neighbor site with probability alpha, or go off lattice with probability 1 - alpha to move in a random direction until it lands back on the lattice at a fixed distance L away from the departure point. Considering alpha and L as optimization parameters, we seek to enhance the chances of successful detection by minimizing the probability P_N that the target remains undetected up to the maximal search time N. We show that even in this simple model a number of very efficient search strategies can lead to a decrease of P_N by orders of magnitude upon appropriate choices of alpha and L. We demonstrate that, in general, such optimal intermittent strategies are much more efficient than Brownian searches and are as efficient as search algorithms based on random walks with heavy-tailed Cauchy jump-length distributions. In addition, such intermittent strategies appear to be more advantageous than Levy-based ones in that they lead to more thorough exploration of visited regions in space and thus lend themselves to parallelization of the search processes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا