Effect of Changing CNN Classifier Parameters on EEG Signals Recognition Ratio


Abstract in English

Brain Computer Interface (BCI), especially systems for recognizing brain signals using deep learning after characterizing these signals as EEG (Electroencephalography), is one of the important research topics that arouse the interest of many researchers currently. Convolutional Neural Nets (CNN) is one of the most important deep learning classifiers used in this recognition process, but the parameters of this classifier have not yet been precisely defined so that it gives the highest recognition rate and the lowest possible training and recognition time. This research proposes a system for recognizing EEG signals using the CNN network, while studying the effect of changing the parameters of this network on the recognition rate, training time, and recognition time of brain signals, as a result the proposed recognition system was achieved 76.38 % recognition rate, And the reduction of classifier training time (3 seconds) by using Common Spatial Pattern (CSP) in the preprocessing of IV2b dataset, and a recognition rate of 76.533% was reached by adding a layer to the proposed classifier.

References used

O. Trifonova, P. Lokhov, metabolic Profiling ofHuman Blood. Biomeditsinskaya Khimiya, Vol. 60, No. 3.pp. 281-294, 2014.
C.SWEENEY, E. ENNIS, M. MULVENNA, R. BOND, S. O'NEILL.How Machine Learning Classification Accuracy Changes in a Happiness Dataset with Different Demographic Groups. Computers, VOL.11, NO.5, 2022.
M. CONGEDO, L. KORCZOWSKI, A. DELORME AND F. LOPES DA SILVA. Spatio-temporal common pattern: A companion method for ERP analysis in the time domain. Journal of Neuroscience Methods, Vol. 267, pp. 74-88, 2016.
] H. MEISHERI, N. RAMRAO, S. MITRA, Multiclass Common Spatial Pattern for EEGbased BrainComputer Interface with Adaptive Learning Classifier. arXiv: abs/1802.09046, 2018.

Download