Improving Decision Support Systems in Education Systems Using Data Mining and Machine Learning Techniques


Abstract in English

Educational data mining aims to study the available data in the educational field and extract the hidden knowledge from it in order to benefit from this knowledge in enhancing the education process and making successful decisions that will improve the student’s academic performance. This study proposes the use of data mining techniques to improve student performance prediction. Three classification algorithms (Naïve Bayes,J48, Support Vector Machine) were applied to the student performance database, and then a new classifier was designed to combine the results of those individual classifiers using Voting Method. The WEKA tool was used, which supports a lot of data mining algorithms and methods. The results show that the ensemble classifier has the highest accuracy for predicting students' levels compared to other classifiers, as it has achieved a recognition accuracy of 74.8084%. The simple k-means clustering algorithm was useful in grouping similar students into separate groups, thus understanding the characteristics of each group, which helps to lead and direct each group separately.

References used

OLUKOYA,B. Single Classifiers and Ensemble Approach for Predicting Student’s Academic Performance, International Journal of Research and Scientific Innovation (IJRSI) , Volume VII, Issue VI, June 2020 , 238 – 2 43 .
SINGH,R. and PAL,S. Machine Learning Algorithms and Ensemble Technique to Improve Prediction of Students Performance, International Journal of Advanced Trends in Computer Science and Engineering, Vol 9, No 3,2020, 3970 - 39 7 6

Download