On Lattices of Radical Rings


Abstract in English

In this dissertation we proved some of results and theorems about the lattice of radicals of rings. To answer on the questions of J.M.Rjabuhin in [13 ]: Is the lattice of special radicals S is a Boolean lattice? What is the relationship between the lattice of special radicals S and the lattice of special radical classes SC? Is the lattice of special radicals which is Generated by *-ring is an atomic lattice? For that we showed that the lattice of all radicals L is not a modular lattice, so it is not a Boolean one. And we gived examples show that all of the lattices of hereditary , overnilpotent and special radicals are not complemented lattices , so also they are not Boolean ones; so we answered the first question. And we proved that all the atoms in the lattice of hereditary radicals are as l_Q where Q is a simple ring.

References used

research.noReferences

Download