Incorporating External Knowledge to Enhance Tabular Reasoning


Abstract in English

Reasoning about tabular information presents unique challenges to modern NLP approaches which largely rely on pre-trained contextualized embeddings of text. In this paper, we study these challenges through the problem of tabular natural language inference. We propose easy and effective modifications to how information is presented to a model for this task. We show via systematic experiments that these strategies substantially improve tabular inference performance.

References used

https://aclanthology.org/

Download