Unsupervised Text Style Transfer with Content Embeddings


Abstract in English

The style transfer task (here style is used in a broad authorial'' sense with many aspects including register, sentence structure, and vocabulary choice) takes text input and rewrites it in a specified target style preserving the meaning, but altering the style of the source text to match that of the target. Much of the existing research on this task depends on the use of parallel datasets. In this work we employ recent results in unsupervised cross-lingual language modeling (XLM) and machine translation to effect style transfer while treating the input data as unaligned. First, we show that adding content embeddings'' to the XLM which capture human-specified groupings of subject matter can improve performance over the baseline model. Evaluation of style transfer has often relied on metrics designed for machine translation which have received criticism of their suitability for this task. As a second contribution, we propose the use of a suite of classical stylometrics as a useful complement for evaluation. We select a few such measures and include these in the analysis of our results.

References used

https://aclanthology.org/

Download