Do you want to publish a course? Click here

Transparency Near a Photonic Band Edge

148   0   0.0 ( 0 )
 Added by Emmanuel Paspalakis
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the absorption and dispersion properties of a ${bf Lambda}$-type atom which decays spontaneously near the edge of a photonic band gap (PBG). Using an isotropic PBG model, we show that the atom can become transparent to a probe laser field, even when other dissipative channels are present. This transparency originates from the square root singularity of the density of modes of the PBG material at threshold.



rate research

Read More

Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the crossover from propagating fields $E(x) propto e^{pm ik_x x}$ outside the bandgap to localized fields $E(x) propto e^{-kappa_x |x|}$ within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition for the first time by shifting the band edge frequency of the PCW relative to the $rm D_1$ line of atomic cesium for $bar{N}=3.0pm 0.5$ atoms trapped along the PCW. Our results are the initial demonstration of this new paradigm for coherent atom-atom interactions with low dissipation into the guided mode.
We measure fast carrier decay rates (6 ps) in GaAs photonic crystal cavities with resonances near the GaAs bandgap energy at room temperature using a pump-probe measurement. Carriers generated via photoexcitation using an above-band femtosecond pulse cause a substantial blue-shift in the cavity peak. The experimental results are compared to theoretical models based on free carrier effects near the GaAs band edge. The probe transmission is modified for an estimated above-band pump energy of 4.2 fJ absorbed in the GaAs slab.
In the paper are considered stationary (Bloch) states of a particle, in the field of periodic biparabolic type potential. It is shown that while the particles energy decreases in limits of a single energy band, the probability of the particle to be in barrier-type region of periodic potential increases, in contrary to the expected decreasing. This anomalous behavior is more pronounced for the near-top bands and monotonically decreases for the higher or lower ones.
Quantum control of levitated dielectric particles is an emerging subject in quantum optomechanics. A major challenge is to efficiently measure and manipulate the particles motion at the Heisenberg uncertainty limit. Here we present a nanophotonic interface suited to address this problem. By optically trapping a 150 nm silica particle and placing it in the near field of a photonic crystal cavity, we achieve tunable single-photon optomechanical coupling of up to $g_0/2pi=9$ kHz, three orders of magnitude larger than previously reported for levitated cavity optomechanical systems. Efficient collection and guiding of light through the nanophotonic structure results in a per-photon displacement sensitivity that is increased by two orders of magnitude compared to conventional far-field detection. The demonstrated performance shows a promising route for room temperature quantum optomechanics.
Controlling the optical response of a medium through suitably tuned coherent electromagnetic fields is highly relevant in a number of potential applications, from all-optical modulators to optical storage devices. In particular, electromagnetically induced transparency (EIT) is an established phenomenon in which destructive quantum interference creates a transparency window over a narrow spectral range around an absorption line, which, in turn, allows to slow and ultimately stop light due to the anomalous refractive index dispersion. Here we report on the observation of a new form of either induced transparency or amplification of a weak probe beam in a strongly driven silicon photonic crystal resonator at room temperature. The effect is based on the oscillating temperature field induced in a nonlinear optical cavity, and it reproduces many of the key features of EIT while being independent of either atomic or mechanical resonances. Such thermo-optically induced transparency (TOIT) will allow a versatile implementation of EIT-analogues in an integrated photonic platform, at almost arbitrary wavelength of interest, room temperature and in a practical, low cost and scalable system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا