No Arabic abstract
We propose a hybrid quantum computing scheme where qubit degrees of freedom for computation are combined with quantum continuous variables for communication. In particular, universal two-qubit gates can be implemented deterministically through qubit-qubit communication, mediated by a continuous-variable bus mode (qubus), without direct interaction between the qubits and without any measurement of the qubus. The key ingredients are controlled rotations of the qubus and unconditional qubus displacements. The controlled rotations are realizable through typical atom-light interactions in quantum optics. For such interactions, our scheme is universal and works in any regime, including the limits of weak and strong nonlinearities.
The scalability of photonic implementations of fault-tolerant quantum computing based on Gottesman-Kitaev-Preskill (GKP) qubits is injured by the requirements of inline squeezing and reconfigurability of the linear optical network. In this work we propose a topologically error-corrected architecture that does away with these elements at no cost - in fact, at an advantage - to state preparation overheads. Our computer consists of three modules: a 2D array of probabilistic sources of GKP states; a depth-four circuit of static beamsplitters, phase shifters, and single-time-step delay lines; and a 2D array of homodyne detectors. The symmetry of our proposed circuit allows us to combine the effects of finite squeezing and uniform photon loss within the noise model, resulting in more comprehensive threshold estimates. These jumps over both architectural and analytical hurdles considerably expedite the construction of a photonic quantum computer.
In blind quantum computation (BQC), a client delegates her quantum computation to a server with universal quantum computers who learns nothing about the clients private information. In measurement-based BQC model, entangled states are generally used to realize quantum computing. However, to generate a large-scale entangled state in experiment becomes a challenge issue. In circuit-based BQC model, single-qubit gates can be realized precisely, but entangled gates are probabilistically successful. This remains a challenge to realize entangled gates with a deterministic method in some systems. To solve above two problems, we propose the first hybrid universal BQC protocol based on measurements and circuits, where the client prepares single-qubit states and the server performs universal quantum computing. We analyze and prove the correctness, blindness and verifiability of the proposed protocol.
We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within this error model we find a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication.
The hybrid approach to quantum computation simultaneously utilizes both discrete and continuous variables which offers the advantage of higher density encoding and processing powers for the same physical resources. Trapped ions, with discrete internal states and motional modes which can be described by continuous variables in an infinite dimensional Hilbert space, offer a natural platform for this approach. A nonlinear gate for universal quantum computing can be implemented with the conditional beam splitter Hamiltonian $|erangle langle e| ( a^{dagger} b + a b^{dagger})$ that swaps the quantum states of two motional modes, depending on the ions internal state. We realize such a gate and demonstrate its applications for quantum state overlap measurements, single-shot parity measurement, and generation of NOON states.
A set of stabilizer operations augmented by some special initial states known as magic states, gives the possibility of universal fault-tolerant quantum computation. However, magic state preparation inevitably involves nonideal operations that introduce noise. The most common method to eliminate the noise is magic state distillation (MSD) by stabilizer operations. Here we propose a hybrid MSD protocol by connecting a four-qubit H-type MSD with a five-qubit T-type MSD, in order to overcome some disadvantages of the previous MSD protocols. The hybrid MSD protocol further integrates distillable ranges of different existing MSD protocols and extends the T-type distillable range to the stabilizer octahedron edges. And it provides considerable improvement in qubit cost for almost all of the distillable range. Moreover, we experimentally demonstrate the four-qubit H-type MSD protocol using nuclear magnetic resonance technology, together with the previous five-qubit MSD experiment, to show the feasibility of the hybrid MSD protocol.