Do you want to publish a course? Click here

Microscopic derivation of the Jaynes-Cummings model with cavity losses

115   0   0.0 ( 0 )
 Added by Matteo Scala
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we provide a microscopic derivation of the master equation for the Jaynes-Cummings model with cavity losses. We single out both the differences with the phenomenological master equation used in the literature and the approximations under which the phenomenological model correctly describes the dynamics of the atom-cavity system. Some examples wherein the phenomenological and the microscopic master equations give rise to different predictions are discussed in detail.



rate research

Read More

A microscopic derivation of the master equation for the Jaynes-Cummings model with cavity losses is given, taking into account the terms in the dissipator which vary with frequencies of the order of the vacuum Rabi frequency. Our approach allows to single out physical contexts wherein the usual phenomenological dissipator turns out to be fully justified and constitutes an extension of our previous analysis [Scala M. {em et al.} 2007 Phys. Rev. A {bf 75}, 013811], where a microscopic derivation was given in the framework of the Rotating Wave Approximation.
The theory of non-Hermitian systems and the theory of quantum deformations have attracted a great deal of attention in the last decades. In general, non-Hermitian Hamiltonians are constructed by a textit{ad hoc} manner. Here, we study the (2+1) Dirac oscillator and show that in the context of the $kappa$--deformed Poincare-Hopf algebra its Hamiltonian is non-Hermitian but having real eigenvalues. The non-Hermiticity steams from the $kappa$-deformed algebra. From the mapping in [Bermudez textit{et al.}, Phys. Rev. A textbf{76}, 041801(R) 2007], we propose the $kappa$-JC and $kappa$--AJC models, which describe an interaction between a two-level system with a quantized mode of an optical cavity in the $kappa$--deformed context. We find that the $kappa$--deformation modifies the textit{Zitterbewegung} frequencies and the collapse and revival of quantum oscillations. In particular, the total angular momentum in the $z$--direction is not conserved anymore, as a direct consequence of the deformation.
352 - T.W. Chen , C.K. Law , P.T. Leung 2002
We present a propagator formalism to investigate the scattering of photons by a cavity QED system that consists of a single two-level atom dressed by a leaky optical cavity field. We establish a diagrammatic method to construct the propagator analytically. This allows us to determine the quantum state of the scattered photons for an arbitrary incident photon packet. As an application, we explicitly solve the problem of a single-photon packet scattered by an initially excited atom.
We study multiphoton blockade and photon-induced tunneling effects in the two-photon Jaynes-Cummings model, where a single-mode cavity field and a two-level atom are coupled via a two-photon interaction. We consider both the cavity-field-driving and atom-driving cases, and find that single-photon blockade and photon-induced tunneling effects can be observed when the cavity mode is driven, while the two-photon blockade effect appears when the atom is driven. For the atom-driving case (the two-photon transition process), we present a criterion of the correlation functions for the multiphoton blockade effect. Specifically, we show that quantum interference can enhance the photon blockade effect in the single-photon cavity-field-driving case. Our results are confirmed by analytically and numerically calculating the correlation function of the cavity-field mode. Our work has potential applications in quantum information processing and paves the way for the study of multiphoton quantum coherent devices.
In this paper, we present a protocol to engineer upper-bounded and sliced Jaynes-Cummings and anti-Jaynes-Cummings Hamiltonians in cavity quantum electrodynamics. In the upper-bounded Hamiltonians, the atom-field interaction is confined to a subspace of Fock states ranging from $leftvert 0rightrangle $ up to $leftvert 4rightrangle $, while in the sliced interaction the Fock subspace ranges from $leftvert Mrightrangle $ up to $leftvert M+4rightrangle $. We also show how to build upper-bounded and sliced Liouvillians irrespective of engineering Hamiltonians. The upper-bounded and sliced Hamiltonians and Liouvillians can be used, among other applications, to generate steady Fock states of a cavity mode and for the implementation of a quantum-scissors device for optical state truncation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا